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Abstract. The work has developed a method for determining the 

deformation of bent rod structures during an internal explosion. When 

consideration of a quasi-stationary explosion, a model load is 

proposed, taking into account the pressure rise section to the 

maximum value at the beginning of the explosion, then a stationary 

section and then a decline. The pressure in the stationary area is equal 

to more of the two peaks. With a sufficiently long stationary section, 

the maximum deformation is realized here, and is also determined 

from the energy balance. In the case of a short section of stationary 

pressure, maximum deformation develops towards the end of the 

explosion after a pressure drop. The solutions are suitable for 

describing deformation of beams with different fastening at the ends 

and are limited to the case when the maximum value of the load does 

not exceed the resistance of the structure. The results of the work can 

be used in assessing the load capacity of elements of explosive 

industries, residential premises, taking into account the action of 

protective structures. 

 

1 Introduction 
Internal emergency explosions continue to occur with regular frequency. The devastating 

effects of these explosions indicate the poor effectiveness of existing measures to protect 

construction facilities [1-5]. When analyzing these measures, internal explosions should be 

distinguished by their nature and the mechanism of their course. Most of these explosions 

are quasi-static, when it can be assumed that the pressure in the room, at every moment of 

time, is the same at all its points of volume, but changes only in time. Such explosions are 

typical for industrial enterprises with hydrocarbon handling and for residential premises. In 

case of external emergency explosions, the calculation of buildings for bearing capacity is 

carried out using model loads [6-8]. With internal quasi-static, there is no model load. This 

is due to the influence of safety structures, the action of which greatly complicates the 

issue. To date, this feature has not been taken into account. In [9-10], the actual dynamic 

load is replaced by the equivalent static load. The value of the dynamic factor is not 
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justified. In [8] model load shall be built on the basis of rough ideas about pressure 

dynamics during explosion in closed and depressurized volume. The impact of opening 

openings using safety structures is not taken into account. In particular, it is accepted that 

the increase in pressure in a closed volume during a quasi-static explosion follows the law 

of ∆P~t5
, up to the end of the explosion, that the time of the explosion in a closed and 

depressurized volume is the same, that the expiration of hot products of the explosion does 

not affect its character. All these assumptions contradict known experimental factors 

[11,14]. The dependencies used to determine the parameters of the explosion are not 

explained, and are not accompanied by references. Thus, at present there are no model 

explosive loads on which the effects of an internal explosion can be calculated, as in the 

case of an external explosion [6-8].

As a result, there is an urgent need to develop model explosive loads during an internal 

explosion, which adequately take into account the characteristics of the internal explosion, 

both taking into account the influence of opening openings, and taking into account the 

influence of opening openings for depressurizing with the quasi-static nature of the 

explosion.  

2 Material and methods 

When interacting explosive load with construction structures, we will distinguish three 

modes of loading the structure depending on the ratio of the characteristic times of action of 

the load (explosion) and the time of development of deformation in the structure. The pulse 

loading mode is characterized by the ratio: tex/tc≤1, the quasi-static loading mode is 

characterized by the ratio tex/tc≥10, where tex is the characteristic time of action of the 

explosive load, tc is the characteristic time of deformation of the structure. During pulse 

loading, the final deformation is determined by the explosive load pulse, during quasi-static 

loading, the deformation is determined by the maximum explosion pressure value. 

The intermediate values of tex/tc correspond to the dynamic loading mode, at which the 

final deformation is determined by the joint influence of the pulse and maximum pressure. 

The limits given for the separation of modes are conditional, and the accuracy of the 

results is higher, the better the specified conditions are met. 

Next, the case of a quasi-stationary explosion with the model load presented in Fig. 1. 

Fig. 1. Resistance diagram - deformation – 1. Model load at internal explosion - 2, Re - 

equivalent resistance, Fe - equivalent load. 
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This load is constructed as follows: From the ratio: 

∆�� = ���� (	
�)������/���
�������	 (1)

Overpressure ∆P2 in volume is determined if open area of discharge openings S0 is 

specified. 

The second version is that the required area of open openings S0 is determined, if the 

permissible pressure ∆P2 is set, such that the bending moment in the most dangerous 

section during static loading with such a pressure value does not exceed the internal plastic 

moment of resistance M1. 

Pressure ∆P2 is implemented at the time of the maximum burning area which is equal to 

�����/� Here V0 is the free volume of the room, Kf is the coefficient that takes into account 

the shape of the room in the formation of the maximum combustion area, Ug2 is the 

combustion speed at the moment of the maximum flame area, Kn = 0.6 is the flow 

coefficient that takes into account the narrowing of the effluent gas jet compared to the area 

of the opening, σ - the degree of expansion of the gases during combustion, ρ0 - is the 

initial density of the combustible mixture. When maximum combustion area is reached, 

pressure peak is realized. Another peak of pressure ∆P1 is realized during opening of safety 

structures, when the area for outflow has not yet reached S0.

The safety structure shall be considered effective if ∆P1=∆P2. 

How to ensure this condition when glass glazing is used as a safety structure is set out in 

[7]. In the case of opening of the inertial safety structure, this condition shall be met only 

[12]:

∆Р� > ∆Р�(1 + �)���� (2)

Where ∆Pv the pressure at which the bonds holding the safety structures are broken, the 

value (1 + θ) is determined from the condition [12-13]: 
�
В = (� !)"

# − (1 + �) + 0,8 (3)

$ = %&'"/�(����/�
�п-��.� &��/�[�23(	
�)	�]�/� (4)

Value kt - characterizes the time interval from the moment of opening of the opening to 

the moment of the first peak P1 and depends on parameter "B" according to Table 1 [12]:

Table 1. Dependence of parameter «B»
В 0.5 1 2 4 8 16 30 >30 ∞
kt

3
1.025 1.03 1.035 1.075 1.085 1.12 1.07 1.2 1.8

1+θ 2.16 1.91 1.71 1.54 1.41 1.31 1.26 1.2 1

ρn - weight of unit area of the protective structure kg/m
2
, X0 - depth of sealing of the 

protective structure in the opening, Ug - burning speed at the moment of opening of the 

opening, P0 = 10
5

Pa.

When constructing a model load, the maximum is taken as the most of the values ∆Р2 и
∆Р�(1 + �)����, if the latter cannot be reduced. Pressure increase from 0 to maximum ∆Pm

occurs according to the law:

4�(5) = 4Р6 7 �
��9�

(5)

Where  5� = 5�(1 + �)�� is the time of reaching ∆Pm.

It should be noted that t1 in (5) is underestimated compared to the real one, since when 

approaching the first peak there is a deviation from law (5). 

After reaching the first peak, the pressure decreases, and then again rises to a value of 

∆P2. The nature of the decline from ∆P1 and the rise to ∆P2 are not sufficiently studied and 

therefore in the model load the maximum pressure value is reduced during time t1-t2 Fig. 1. 

The time interval t12 = t1-t2 can be estimated by analyzing the explosion.  
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Obviously: 

5�� = :� − :�
;�

Where :� = ����/�
�2  the effective radius of the flame front at the second peak, :� =

<г�@5�- the effective radius at the first peak, A� = <г�@� - the visible flame speed at 

section t12, σ2 - the effective degree of expansion, when determining it, the expiration of 

combustion products is taken into account, which reduces the visible flame speed. It 

depends on the explosion pressure and the ratio 
B� ��

�/�C . In case of explosions in laboratory

conditions corresponding to real conditions σ2 = 0,6σ. The result is an estimate:

5̄�� = 5�E F�
F� G(&�/∆&')�/�

HI(� !) − 1J (6)

As a result of the outflow of the combustion products, the effective rate and degree of 

expansion decreases, and the rate of combustion Ug2 increases due to the occurrence of 

flame instability as a result of the action of the discharge wave, which is caused by the 

change of the flow of cold starting gases to hot combustion products. The effect of these 

processes is mutually compensated, and therefore 
F�
F� ≈ 1will be used for assessments. 

The load decay time t23 has little effect on the final deformation and the proposal for the 

duration of this section will be applied after consideration of the deformation in section t12. 

To consider the deformation of the bent elements, a diagram of the bending resistance 

Ry combined with the load L6(5) = 4�(5)MN, is presented, Fig.1

OP = �эR R < RTU O6 = �эRTU
(7)

OP = O6   R ≥ RTU
For hinged-supported beam: 

O6 = WXY
Z , �э = �W�\^

#Z" (8)

For a pinched beam at two ends: 

O6 = W (XY` XYa)
Z , �э = ��b\^

Z� (9)

For a beam fixed at one end and hinged-supported at the other end: 

O6 = � (XY` �XYa)
Z , �э = �c�\^

Z� (10)

The following symbols are used in expressions (7) to (10): 

E - modulus of elasticity, J - moment of inertia of section at bending, Yel - maximum 

deflection at the end of elastic stage, Мр = fg@h – - maximum internal moment of bending 

resistance in section with plastic moment of bending resistance Zp, σT - dynamic yield 

strength of deformable material [15-16]. Mps is the plastic moment of resistance in the 

support section, Mpm is the plastic moment of resistance in the middle section. For 

equivalent beam Mp = Mpm = Mps and therefore:

O6 = �cXY
Z Oу = ��XY

Z (11)

When consideration of bending structures, it is convenient to use equivalent systems, 

that is, systems with reduced force and mass [17].

The equation of motion of the equivalent system in the elastic stage is described by the 

expression: 

R̈k + Rk = $� 7 �̅
��̅9�

(12)

Rk = m
mno, 5̅ = �

�p ;  5r = sXo
Ho

E3S Web of Conferences 263, 02048 (2021)

FORM-2021
https://doi.org/10.1051/e3sconf/202126302048

 

4



tU = �ut; �U = �Z�э; $� = ∆&avZ
wa ;

The drive coefficients for mass and force for the case of the static deflection line in the 

elastic stage are: �u = 0.5
�Z = 0.64|  For hinged-supported beam

�u = 0.41
�Z = 0.53| For a pinched beam at two ends

�u = 0.45
�Z = 0.58| For a beam fixed at one end and hinged-supported at the other end/

In case of plastic deformation: 

�u = 0.33, �Z = 0.5 for all types of beam anchoring.

This paper discusses deformation for the case L6 < O6. For section 0-1, where 

4�(5) = 4Р6 7 �
��9�

at elastic deformation the solution (12) has the form [18].

Rk = $�Ф; Rk̇ = $�Ф̇; (13)

Where  Ф = c
��kkk� ����5�̅ − 5�̅ + ��̅�

c � ;  Ф̇ = c
��kkk� 7���5̅ − 1 + �̅�

� 9
In the 1- el section, that is, from the time t1 of the end of pressure growth to the time of 

the end of elastic deformation, of the solution, the equation of motion has the form: 

∆Rk�̇ = $�Ф̇ cos ∆5̅ + $�(1 − Ф) sin ∆5̅ (14)

∆Rk� = $�Ф̇ sin ∆5̅ + $�(1 − Ф)(1 − cos ∆5̅)
∆Rk� – is a dimensionless design offset after t1, that is, ∆R = R − R�.

∆5̅ − the time deducted from the moment t1, ∆5̅ = 5̅ − 5�̅.

At ∆Rk� = 1 − Rk� = 1 − $�Ф , the elastic stage of deformation in timepoint of ∆5T̅U =
5T̅U − 5�̅. comes to an end with _el-t. This moment is defined from the second equation (16) 

at ∆Rk� = 1 − $�Ф and is equal:

∆5T̅U = 2arctg ∆mkno
∆mk�̇
(��
�
�Ф) (15)

Next, the case is considered when the maximum deformation is plastic and ends in the 

section  5�̅ −   5�̅ Fig.1 By the moment of maximum plastic deflection R6 the total strain 

energy is OTR6 − �
� OTRTU . Operation of external force F(t) in section 0 − R6 is composed 

of operation in section 0-t1, where force changes according to law (5) and operation of 

constant force F in section R� − R6.  Energy conservation is written for an equivalent 

system, since the law will be universal for all types of beam anchoring.

OTR6 − �
� OTRTU =  �

� �TR�� − �
� �TR�̇

� + LT(R6 − R�) (16)

OT =  �TO6, �T = �ut,     LT =  �TL
The result for the ductility coefficient is: 

� =  � ��(Ф�� Ф�̇�
�Ф�)
�(�
�) (17)

This expression is fair, that is it can be used if the maximum deformation is 

implemented until recession of loading t2. 

It follows from the expression (17) that in the equivalent systems carried out equal 

ductility coefficients are obtained for the same values Bf and t ̅1. However, it should be 

borne in mind that the resistance forces Rm and Re and the ultimate elastic deformations are

different for different cases of fixation of beams. As a result, absolute deflections of 

R6 = ��RTU turn out different.
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If in the expression (16) of conservation of energy instead of Ym substitute Yel, then you 

can get the value of the velocity at the moment of the end of elastic deformation ṘTUkkkk, given 

that RTUkkkk = 1. The result is:

ṘTUkkkk� =  $���Ф� + Ф̇� − 2Ф� + 2$� − 1 (18)

The plastic deformation step is described by: 

Ṙukkk =  ṘTUkkkk − (1 − $�)∆5̅ (19)

Stop time after the start of plastic deformation 

∆5u̅ = ṁno
(�
�) (20)

As a result, ductility factor: 

�� = 1 + ṁno�
�(�
�) (21)

It is easy to make sure using (18) that the expressions (17) and (21) match. These 

expressions are obtained on the assumption that the braking time during plastic deformation 

is ∆5u̅ less than the action time of the maximum explosive load at the stage of plastic 

deformation, that is,

∆5u̅ < 5�̅� − (5T̅U − 5�̅) = ∆5g̅U (22)

If this condition is not met, the braking time in the area where the external load is 

maximum is 5�̅ − 5T̅U , and deformation speed at the time of 5�̅ is equal:

Ṙ�E = ṘTUkkkk − �1 − $�� (5�̅ − 5T̅U) (23)

By the time t2. the strain will be: 

Ṙ��kkkk = R�E = 1 + �ṘTUkkkk − ��
��
� (5�̅ − 5T̅U)� (5�̅ − 5T̅U)  (24)

Finally, in the pressure drop section 2-3, the movement of the structure is determined by 

the following ratios: 

Ṙ��kkkk = Ṙ�E − �1 − $��∆5�E − �∆��kkk�
���̅� (25)

where ∆5�E - is counted from 5�̅,

5�̅� - pressure drop time from maximum value ∆Pm to 0.

During internal explosions, the pressure drop process was not studied in detail. 

However, it can be argued that large values of 5�̅� correspond to large deformations in this 

area. With small values of 5�̅�, deformation may not end in this area. But in general, the 

difference in deformation in this area weakly affects the total deformation. Here it is 

proposed to accept 5�̅� = ṁ�kkk
�
�

�
. At this value 5�̅�, the structure stops just at the moment 5�̅.

At the same time, the displacement of the structure in this section ∆Rk�� corresponds to:

Rk�� = ṁ�kkk�

�(�
�
� )

 (26)

3 Results 

It was previously stated that this work considers the conditions leading to plastic 

deformations, provided that the force factor $� = �
wa < 1. And it means that at the end of 

an elastic stage of deformation the design still has kinetic energy, that is ṘkTU > 0.

Table 2 shows the results of calculations of the velocity of the studied structure at the 

end of the elastic deformation stage for various combinations of the force factor Bf and the 

explosion pressure rise time. 
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Table 2. Velocity of the studied structure at the end of the elastic deformation stage 

$�\5�̅ 0.5 1 2 3 4 5 7 10 20 30

0.5 - - - - - - - - - -

0.6 0.443 0.432 0.387 0.310 0.198 - - - - -

0.7 0.629 0.618 0.576 0.510 0.425 0.327 0.065 - - -

0.8 0.770 0.759 0.715 0.646 0.560 0.466 0.288 0.127 - -

0.9 0.890 0.878 0.829 0.754 0.662 0.562 0.382 0.247 0.091 -

0.95 0.944 0.930 0.880 0.800 0.704 0.600 0.413 0.277 0.134 0.088

$TU 0.501 0.505 0.519 0.542 0.573 0.612 0.695 0.772 0.869 0.909

Determination of speed of ṘkTU is executed by _el based on the ratio of (18).

Therefore, the ratio is calculated the limit value of the force factor Bel, at which the 

deformation does not go into plastic for the specified load build-up time. This value is 

located in the last line of Table 2. 

Table 3 gives the parameters often used in the calculation to characterize deformation at 

the load build-up stage, depending on the dimensionless load build-up time. 

Table 3. Characterize deformation at the load build-up stage 

5�̅ 0.5 1 2 3 4 5 7 10 20 30

Ф 0.0125 0.0488 0.182 0.365 0.054 0.714 0.889 0.937 0.986 0.99
3

Ф̇ 0.124 0.242 0.458 0.558 0.595 0.566 0.424 0.289 0.200 0.09
98

Ф�
+ Ф̇�

0.0155 0.0609 0.242 0.444 0.660 0.829 0.970 0.961 0.994 0.99
6

Ф�
+ Ф̇�
− 2Ф

-
0.0095

-
0.0368

-
0.140

-
0.286

-
0.447

-
0.598

-0.808 -0.912 -0.977 -
0.990

Table 4 shows the maximum possible values of ductility coefficients μ∞, which are 
realized when condition (24) is met, with sufficiently large values of 5�̅�.

Table 4. Ductility coefficients μ∞,
$�\5�̅ 0.5 1 2 3 4 5 7 10 20 30
0.95 9.91 9.67 8.74 7.4 5.96 4.6 2.73 1.77 1.18 1.065
0.9 4.96 4.85 4.44 3.84 3.18 2.58 1.74 1.3 1.04 0.99
0.8 2.48 2.44 2.28 2.04 1.78 1.54 1.21 1.04 0.94 0.92
0.7 1.66 1.64 1.55 1.45 1.3 1.18 1.01 0.92 0.87 0.86
0.6 1.25 1.23 1.19 1.12 1.05 0.98 0.89 0.84 0.81 0.805

To fill with contents assessment (22) and to use expression (23) it is necessary to determine 
the size ∆5T̅U = 5T̅U − 5�̅.
This value is shown in Table 5. 

Table 5. Determine the size ∆5T̅U = 5T̅U − 5�̅.
$�\5�̅ 0.5 1 2 3 4 5 7 10 20 30
0.95 1.5 1.37 1.14 0.91 0.83 0.55 0.376 0.474 1.98 0.32
0.9 1.56 1.44 1.16 0.98 0.795 0.65 0.61 0.59
0.8 1.7 1.58 1.31 1.15 0.987 0.88 0.665
0.6 2.2 2.07 1.78 1.8 1.75
0.5 Deformation only in elastic stage.
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The following is an example of determining the development of deformation during an 
internal explosion. 

Example 1. 
$� = 0,95, В=4, 5�̅ = 4, R�TUkkkkk̇ = 0.704 (Table 2) и ∆5T̅U = 0,83 (Table 5), Pv=1,2 kPa,  

5�̅� =1,75t1.
Time of plastic deformation in section 5�̅�:

∆5kkkgU = 5�̅� − ∆5kkkTU = 1.75 ∗ 4 − 0.83 = 6.17
Deformation rate to moment 5�̅ of (25)

Ṙ�E = ṘTUkkkk − � 1 − $��(5�̅ − 5T̅U) = 0.3955
Deformation at moment 5�̅ of (24)

Rk� = 1 + �0.704 − 0.05 ∗ 6.17
2 � 6.17 = 4.4

Further, taking into account (28), deformation in the pressure drop section 2-3 is 
determined. 

∆Rk�� = R�kkk�
2(1 − $� 2  )

= 0.149
Total deformation: 

 �¡ = 4.44 + 0,149 = 4,59 < �� = 5,96
The total deformation in this case is less than the deformation, obtained with a larger 

value 5�̅�.
Example 2. 
$� = 0,9, В=4, 5�̅ = 5, R�TUkkkkk̇ = 0.562, ∆5T̅U = 0.65
Full braking time: 

5uE = 0.562
1 − 0.9 = 5.62

Plastic Strain Time: 5gU = 5�� − ∆5TU = 8.1
Since 5uE < 5gUkkkk that is, the design stops before 5�E , and therefore �¡ = �� = 2,58 Table 5.
Example 3. 
$� = 0,95, В=0.5, 5�̅ = 0.5, RTUkkkk̇ = 0.994, ∆5TU = 1.5, Pv=1,2 kPa.
From (6)  5�̅� =0.53. 
This time is less than 5T̅U, so the deformation in this area remains elastic and at the end of 
time 5�̅� = 0,53 according to (14) R�Ė =0.58, Rk� = 0.2.
Thus, the period of load decline at the moment 5�̅ deformation is still elastic.
There is no experimental data on pressure drop under such conditions, then the operation of 
the external load is determined by the average value of this load, and then from the
conservation of energy it is obtained: 
OUR6 − womno

� = �
� �TR�� + �

� �TṘ� + �n
� (R6 − R�) �:

�¡ 71 − ��
� 9 = �

� 7Rk�
� + Ṙ�E �9 − ��

� Rk� , �¡ = 1.8
In the energy conservation record, assuming the possibility of plastic deformations at the 
pressure drop stage. The result is very specific with the result �� = 9,91 for   5�̅ = 0,5, and 
$� = 0.95.
The paper presents possible methods for calculating the load capacity of beam structures 
during an internal explosion. 
When analyzing the deformation of beam structures during quasi-static explosions, a model 
load with a rise phase corresponding to the first peak was used, and the maximum load was 
taken by most of the two peaks. Such a load is conservative, since the maximum pressure 
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value for the constant pressure phase is selected, which in turn is also a conservative 
estimate of the dynamics of pressure between peaks. 
Both time of increase of pressure of 5�̅ and time between t pressure peaks ̅5�̅�. has 
considerable impact on the nature of loading. At high pressure times, the loading pattern is 
quasi-static, the ductility coefficient exceeds the value �� > 2 only for the power factor 
$� > 0.9.
With a force factor, $� > 0.5 deformation does not change to plastic never. The μ∞ strain 
level increases monotonically as the force factor increases, as shown in Table 4. However, 
the time interval 5�̅� − ∆5kkkTU is often insufficient to complete plastic deformation under 
maximum model load conditions. The time interval 5�̅�decreases with a decrease in the 
volume of the room and an increase in the rate of explosive combustion due to a decrease in 
5�̅ (see (6). The second multiplier in (6) also decreases with an increase in the combustion 
rate and a decrease in volume. This follows from (3-4). However, ∆5kkkTU grows with a 
decrease in 5�̅ Therefore, even at high Bf values (Example 3), deformation may not proceed 
to the plastic stage.
However, it must be kept in mind that in the conditions of the small size of parameter B it is 
necessary to pay less than unit for preservation of a power factor of Bf. 

4 Conclusion 

In conclusion, it should be noted that the present work is essentially the first to address the 
deformation of the supporting structure in internal emergency explosions, taking into 
account the effect of safety structures. This action takes into account both the design 
maximum pressure and the time interval between pressure peaks. The paper considers the 
case when the explosive load controlled by the action of protective structures meets the 
requirement of $� < 1, which in turn means the impossibility of plastic deformation at the 
stage of pressure growth at the beginning of the explosion. The model load allows you to 
make a conservative estimate of deformation, since the maximum pressure acts throughout 
the time between peaks, and it corresponds to the pressure at a larger peak. Design 
conditions are not taken into account in the work, reliability issues are not considered.

They are left to the discretion of the persons concerned. 
The author believes that further experimental studies of internal explosions using safety 

structures will help to take into account the nature of the pressure change between peaks 
and clarify the calculation of deformation in the pressure drop section. 
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