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Abstract. The article deals with the creation of continuous metal and 

monolithic reinforced concrete bridge spans, which are the most effective. 

Efficiency is achieved by finding opportunities for the unification of 

structures with the most successful options for providing them with the 

required load-bearing capacity with the lowest cost of building materials. 

The bending moments that occur in the sections of a continuous structure 

are distributed more evenly and take on smaller values in the span than in a 

split structure. However, the efficiency of continuous structures can be 

further improved by introducing a certain coefficient of the length of the 

extreme spans of the bridge relative to the average ones. This allows you to 

achieve equality of the reference or span bending moments. As a result, the 

design will work in such a way that it will be possible to build the bridge 

span as if from three types of unified blocks, which will reduce the 

complexity and cost of construction work. As an example, in this case, the 

ratio of spans and the corresponding division into blocks for four-span 

continuous bridges are determined.  

1 Introduction 
It is known that a continuous static circuit in comparison with a split circuit has a number of 

advantages. In particular, in a continuous section, smaller bending moments occur and there 

is a uniform distribution of moments in the spans [1,2]. Thus, the use of continuous 

structural schemes makes it possible to increase the length of bridge spans. The advantages 

of a continuous circuit have long been used by designers in practice. However, almost no 

attention is paid to the search for the most economical ratios of the bridge spans between 

each other. In the literature, only approximate values of the span ratios are given in general 

for bridges, and not for specific variants of continuous lashes. Often, the ratio of spans is 

assigned for reasons of ensuring the architectural expressiveness of the bridge, without 

checking for its optimality. The issues of choosing the optimal ratios of bridge spans from 
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the position reflecting the minimization of the operating forces were considered in the 

works of the authors [3,4] for arch systems.  

2 Research studies, design of bridges  
Continuous bridges can consist of a different number of spans. In bridge construction 

practice, three-span continuous bridge schemes are often used. An example is the bridge 

over the Volga-Don Shipping Canal, which is being built on a new bypass road around 

Volgograd, the need for which was reflected in the work [6] and subsequently emphasized 

by various news agencies and government representatives [5]. Diagram of the continuous 

lash of the specified bridge 105+147+105. The total length of the superstructure is 357 m. 

For the unification of structures in the design and construction of the size of the average 

spans should be made the same. The extreme spans must be of such a length that the 

bending moments in the continuous bridge beam will be the same. In the specialized 

literature, the data on the variants of such length coefficients are very approximate and not 

specific [7,8]. Accordingly, when using these data, errors are possible, which inevitably 

lead to the need to prematurely resort to restoring the operational qualities of bridge 

structures, and, as a result, to additional costs of financial resources [9]. The exact value of 

the length coefficient of the extreme span of a continuous three-span bridge was determined 

and described in [10, 11]. When equating the maximum bending moments in the extreme 

and middle spans, the following expression is obtained: �·��
� − �·�����	
�

�(�	�) = ��·�∙�
 − �����∙� � ∙ ��·�

 − �����∙�∙� � − �
 (�∙�

 − �����∙�∙� ), 

When solving this equation, the span ratio coefficient is obtained. It is n = 0.794 if the span 

moments are equal (the reference moments in a symmetrical three-span bridge are always 

equal).  

Thus, for the equality of the span moments in the beams of the span structure of the 

bridge over the Volga-Don canal, it was necessary to design a scheme of spans 

109+138+109. Three-span continuous structures are often used when designing overpasses 

over roads and Railways, at transport interchanges, and in bridges over small rivers. 

Calculations of these transport structures for various types of loads can also be 

performed using well-known calculation systems [12, 13, 14] or using the superelement 

approach [15, 16], which allows optimizing the calculation process. 

 
Fig. 1. The bridge is a continuous girder system. 
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3 Determining the optimal span ratio for a four-span bridge and 
analyzing the results 
Along with three-span continuous bridges, four-span bridges or bridges with four-span 

continuous lashes are often found. We study the continuous span of the bridge with four 

spans. Figure 2 shows a diagram of loading a beam with a constant qconst load (a), diagrams 

of bending moments (b) and transverse forces (c).

The studied beam is symmetric, therefore, the system of equations for beam moments 

consists of two equations [17], because М1 = М3.

�
 ∙ 2� ∙ (� + 1) + � ∙ � = −6(������(��)�
24 + ��������

24 )
�
 ∙ 2� +  � ∙ 4� = −6(���

� + ���!"#��
� )                                              (1) 

There are two possible cases in solving this system of equations: 

1 – equality of the reference bending moments (Figure 2); 

2 – equality of span bending moments (Fig. 3). 

Let's consider the first case – equality of reference moments М1 = М2. Then, according 

to the second of equations (1), we get �
 = − ���!"#��

 , and according to the first one after 

the transformations n2
= 2/3. The coefficient of the length of the extreme span was n =

0,8165.

Determine the values of the flying moments. With equal reference moments M1 = M2,

the span moment of the second span will be 

                             �� = ����
� � = 0,0416��.

The flying moment of the first flight is obtained from the expression                       

�
� = ���∙$,�
%&
 − �'�∙$,�
%&� ∙ ��∙$,�
%&

 − �'��∙$,�
%&� − �/2 ∙ (�∙$,�
%&
 − �'��∙$,�
%&).

Substituting the value of the reference moment M1 we get �
� = 0,0468��.

The moment values differ by 11 percent.

 

Fig. 2. Scheme of operation of a continuous beam with equal support moments. (Here *
 = ��∙�
� −

 �'�∙�∙� , * = �
 .). 
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In the second case, a new equation is required to meet the condition of equality of span 

moments in a continuous beam. Figure 3 shows the span sections where the maximum 

bending moments will be applied. In this case, the reference moments are not equal. 

 

�
-.3 = ��·�·�
 − �'�·�� ∙ ��·�

 − �'�·�·�� − �/2 ∙ (�·�
 − �'�·�·�)                                      (2) 

�5-.3 = ��·�·�
5 − �7�·�� ∙ �� · � + �79�5�� + �/5� − (�·�·�

5 + �7�·� + �·�
5 + �79�5� ) ∙ ��79�5�·� + �

5� +
+�/5(� · � + �79�5�·� + �

5)5                                                                                                      (3) 

 

Fig. 3. Scheme of operation of a continuous beam with equal span moments. (Here *
 = ��∙�
� − �'�∙�∙� ,

* = �
 − ��9�'�� .). 

Expressing the values of the moments from the system (1) and substituting in the 

expression (2) and (3) after the transformations, we get the resolving equation in the form 

��
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Solving the equation with respect to n we get the coefficient of the length of the extreme 

span n=0,787.  
The reference moments are determined from the solution of the system of equations (1) 

and for n = 0,787 they are:  �
 = − ���!"#��

� , � = − %���!"#��

&% .

The values of the reference moments acting in a continuous beam differ by 5 percent. 
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The equality of support or span bending moments in the sections of the superstructure 

allows you to divide the entire continuous superstructure into unified blocks of three 

characteristic types: 

- first block (B1) – calculated on the current span positive moments; 

- the second block (B2) accepts loads in the area of internal, intermediate supports; 

- the third block (B3) is intermediate, combining the two previous blocks, and 

perceiving small moments of both signs or the end block. 

We show a split into unified blocks of a span structure with Central spans of 63 meters. 

The extreme spans, taking into account the obtained coefficients, will be 52,5 meters if the 

span moments are equal. Total length of the bridge of the received scheme 52,5 +63+63+ 

52,5 it will be 231 meters, which corresponds to 11 blocks of 21 meters each. Standard 

block lengths of 21 meters and 10,5 meters are used in the design and construction of metal 

bridges. By placing the blocks in accordance with the current forces, we get an economical 

bridge span (Figure 4). 

 
Fig. 4. Scheme for dividing the continuous lash of the bridge superstructure into unified blocks: B1 –

span section block, B2 – support section block, B3 – intermediate block. 

In modern conditions, BIM-technologies are increasingly used in the design of road 

infrastructure and artificial structures [18, 19]. Standardization and unification at the same 

time again become a requirement of the time, which is reflected in the ODM 218.1.002-

2010 (Recommendations for the organization and conduct of standardization work in the 

road sector. The Agency, Moscow, 2010) . Models of unified spans of bridge structures can 

be included in data models when designing road infrastructure [20]. 

4 Conclusions 
Based on the above, we can draw the following conclusions: 

1. In continuous beam superstructures, it is possible to assign the dimensions of spans so 

that the effective reference moments take the same values. 

2. Equality of the values of the effective reference moments requires a ratio of 

spans1/0,787, and equality of the span moments – 1/0,8165. 

3. The action of the same bending moments (support or span) in the beams of the bridge 

superstructure allows the use of unified blocks in the design and construction, which 

reduces costs.  
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