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Abstract. Stability problem of an axisymmetric swirling flow of a viscous 

incompressible fluid with respect to nonaxisymmetric perturbations is 

considered. The system of ordinary differential equations for the amplitude 

functions is solved numerically by the Runge-Kutta method and 

orthogonalization procedure. Solutions of equations for perturbations at the 

neighborhood of singular points are obtained by the Frobenius method. 

The maximum of amplification coefficients and phase velocities of five 

unstable modes are calculated. 

1 Introduction 
Vortex flows are often observed in hydraulic engineering problems. The properties of the 

swirling flow are used in the suction tubes of hydraulic turbines, vortex spillways, counter-

vortex energy absorbers, counter-vortex aerators, heat exchangers, purification structures, 

temperature and fractional separation devices [1-7]. Flow stability analysis for the 

considered constructions is very important and actual problem. An effective tool for 

studying the hydrodynamic stability of a viscous incompressible swirling flows is a model 

based on the Navier-Stokes equations. The hydrodynamic stability problem of swirling 

flows for various configurations was studied numerically in [8-15]. The results of 

experiments on the stability of swirling flows are presented in [16-18]. In this paper, an 

effective method for calculating the stability of a swirling flow with an arbitrary initial 

velocity profile is presented. 

2 Problem formulation 

Let's consider an axisymmetric viscous incompressible flow in a cylindrical coordinate 

system ),,( zr � . The system of the Navier-Stokes equations for the variables velocity and 

pressure is written in the form: 
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where �VVV rz ,,  are the axial, radial and azimuthal velocity components, p  is the 

pressure, Re  is the Reynolds number. 

Suppose that the flow under consideration has the following velocity distribution:

 �rWVVrUV rz ��� �,0,)( .                                            (5)

We will investigate the behavior of small perturbations for flow (5) in the form: 

� � � � )](exp[,,,,,, tcnziPHSiFpVVV rz ���
������ � ,                         (6) 

where � is the wave number; n is the disturbance mode ;...)2;1;0( ���n , c is the 

wave propagation velocity; i is the imaginary unit; )(rF , )(rS , )(rH , )(rP  are the 

complex amplitude functions. 

After linearization equations (1)-(4) and substitution expressions (5), (6), we obtain the 

ordinary differential equations system for the complex amplitude functions: 
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0)( �
�
� HnSrFr ,                                                  (10)

where rnWcU /)( 
���� . 

The boundary conditions at 0�r  for system (7)-(10) can be written in the form: 

0)0()0( �� HS , )0(),0( PF – bounded for 0�n ,             (11) 

0)0()0( ��HS , 0)0()0( �� PF – for 1��n ,                    (12)

0)0()0()0()0( ���� PFHS – for 1�n .                    (13) 

The conditions on the pipe wall at 1�r  have the form: 

0)1()1()1( ��� HSF .                                           (14) 

For free vortex flows (unbounded by solid walls), the damping conditions for 

disturbances are applied 
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0)()()()( �������� PFHS .                                            (15) 

In this study, perturbations (6) are considered periodic in z  with a time-varying 

amplitude. So �  is a real value ( ���� /2  , where �  is the perturbation wavelength), and 

ir cicc 
� is a complex value, rc is the propagation disturbance velocity in z  direction 

(phase speed), ic  is the growth rate disturbance in time. The amplitudes of the disturbance 

(6) decay (the flow is stable), if 0�ic , and grow with time (the flow is unstable), if 0�ic . 

3 Numerical method
We represent system (7)-(10) in matrix form: 

},,,,,{,, HrFrrPHSFzzA
dr
dz

jjji
i ���� ,                               (16) 

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

��









�


�

��

��





�

�




�



��

����

�

�

�

��

�

00
Re

)(Re

Re

)
1

(

2

)Re(

0

00Re0Re

)(Re

Re

)(

ReReRe
2

Re
)(

)(

0

00000

000

00000

2

2
2

2

2
2

1

2

2
2

1

11

1

,

r
in

cUir
inW

r
r

n

r
n

r
WWir

iUir
cUir

inW

r
r
n

ir
n

i
r

ir
nW

i
r

r
n

nWrcU
r

nrr
r

A ji

The resulting system (16) has a regular singular point at 0�r . In the general case, a 

linear system of differential equations has a regular singular point if we can write the 

original system in the form: 

 
�

���
n

q
qqpp npyrfryr

1

, ,,2,1,)()( �

where !
�

�!

! � rarf qpqp
0

)(
,, )(  and all functions at the point 0�r  are regular and do not 

vanish simultaneously. The solution can be found by the Frobenius method in the power 

series form: 

!
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where �  is the root of the characteristic equation 
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Let's use the Frobenius method to find the solution in this case. We write system (16) in 

the form: 

zrAzr
k

k
k �
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�0

where matrices kA  consist of coefficients at powers 
kr . We will find the solution in the 

form: 
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k
k rsrz .                                                      (17)

Substituting it into the system of equations (16), we obtain: 
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Equating the coefficients at the same degrees, we obtain the following matrix system for 

vectors: 

etc

,))2((

,))1((

,0)(

110220

0110

00

��

sAsAsEA

sAsEA

sEA

���
��

��
��

���

                              (18) 

where E  is the identity matrix. The characteristic equation allows you to find � :

)1( 
� n , n� , )1( �� n . Three of them should be discarded, since the perturbations should 

be bounded at 0�r . We will number the remaining three values in such a way that the 

condition 321 ����� is satisfied. After finding the expansion coefficients, we get the 

fundamental solutions system. To determine the coefficients, a computer program was 

developed that allows to calculate any number of terms in the expansion (18). Finding the 

coefficients is reduced to solving systems of linear equations. 

The stability problem for swirling flows unbounded by solid walls has one more 

singular point at �'r . To find a solution in this case, we write the system of equations 

(7)-(10) in the form: 

},,,,,{,ˆ
, HFPHSFyyA

rd
yd

jjji
i ���� .                         (19)

In most cases, at large values of r  for a free vortex we can take 0�U , rqW /� . Then 

the matrix jiA ,
ˆ  will have the form:  
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where Re22 ci����( . The solution at this irregular singular point will be sought in 

the form 

 
�
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!
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0

, rbrey i
Dr

i .                                                      (20)

To determine the expansion coefficients, it is necessary to solve the system of matrix 

equations: 
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Here !B  is the matrix consisting of the expansion coefficients of the matrix Â  in 

powers !�r , i.e.  
�

�!

!�
!�

0

ˆ rBA , !b  is the vector of the required coefficients. From the first 

equation (21) follows the equation for determining � : 

0)(det 0 ��� EB

Therefore we find 6 values � : �� , (� , (� . Three of them ��� , (
 , (
  should be 

discarded, since the perturbations should vanish at ��r . For all of the three � , 5.0�D  is 

obtained. 

In the particular case, for ���� , the solution can be written in the form of modified 

Bessel functions 
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4 Calculation results and discussion
The considered asymptotic method allows us to find a solution for the system of equations 

(7)-(10) in the neighborhood of singular points. Using these expansions, the integration of 

equations (7)-(10) was performed by the Runge-Kutta method with an automatic choice of 

the step. To ensure the stability of calculations, the Gram-Schmidt orthogonalization 

method was applied. The software package implementing this algorithm was compiled in 

the Fortran-90 programming language. 

As a test problem, we investigate flow stability in a tube rotating around its axis at 

constant angular velocity q : 

qrrWrrU ��� )(,1)( 2 .                                           (22) 

The calculated dispersion curves for a fixed Reynolds number 1000Re �  and 1�q  are 

shown in Figure 1. In this case, there are five unstable modes. All these modes are inviscid, 

since the amplification coefficients tend to some constant values at �'Re . The 

calculated values ii c��-  and rr c��-  at large values of the Reynolds number 
510Re �  

correspond to the results previously obtained using the inviscid theory. 
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Fig. 1. Amplification coefficients (solid lines) and oscillation frequency (dashed lines) at 
410Re � , 

1�q , modes 1-5 (curves 1-5) 
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5 Сonсlusions
The developed algorithm makes it possible to investigate the stability of swirling flows with 
an arbitrary velocity profile and to determine the range of the fastest growing disturbances.
Analysis of the calculated dependences contributes to the correct choice of the optimal 
operating mode of vortex devices in order to avoid the phenomenon of vortex destruction.

The work was supported financially by the Russian Foundation for Basic Research (project No 18-01-
00762). 
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