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Abstract.The article shows the advantages of the Van-Rijn method from 
the analysis of existing calculation methods for determining the sediment 
discharge. Based on the results of laboratory studies and the Van-Rijn 
dependence, dependence was obtained to determine the discharge of 
bottom sediment, taking into account the establishment of the channel 
slopes. The resulting dependence is compared with the dependences 
obtained by other researchers, and these comparisons show good 
convergence between them. 

1 Introduction 

In determining the movement of underground aquifers, the following approaches are used: 
deterministic, probability and rifle movement of aquifers[1-8], [17-21]. 

In the deterministic approach, the action of a single-sex large-section particle at the 
bottom of a flat stream is considered in the mode of square resistances. It is accepted to 
strain the bottom of the tub, as there will be a basis providing the extraction of discharges 
from the bottom of the Uzan. This parameter is entered either directly in the computational 
formulas

0 /*u T v , or through the size of the flow dynamic speed. As a quantitative 

indicator of the driving force, the difference( nuu 0 ) in the values of this voltage at the 
beginning of the underground impulse voltage and particle motion is assumed. In some 
cases, the difference in impulse voltages is replaced by the difference in the vertical by the 
middle and non-washable speeds of the current 0( / )avu gd . The differences, in this 
case, represent the speed of the subterranean particles, and the magnitude represents the 
number of particles participating in the movement. The difference or ratio of the dynamic 
speed and its critical speed is considered in other cases [18-26]. 

It is also one of the methods of calculation of underground ores. It is a method of 
determining the number of ores transported from the bottom to the bottom of the channel, 
which is in the form of an underground wavy motion. The movement of the underground 
formation that occurs in this situation is considered to be smoothly variable; that is, all the 
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static characteristics of the underground release, particularly its average height and the 
average length of its rifle, will not depend on the time. 

Having considered the movement of the underground wave as flat, we write the 
complete differential of the height of the desired point of the underground line in one 
moment [3, 4]: 
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You will be able to determine the height and move along the bottom of the bottom on 

dz0 this point:  
 

0 0 0.z zdx
x dt t
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 
     (2) 

 
Z0 from the differential equation of deformation, which is written for a point, we get the 
following: 
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where  is the grоunt porosity coefficient. 
By putting (3) to (2) and saying the speed of point movement, we will have the following: 
 

 
0

01bot
z

q zC
x x
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By integrating (4), we will have the following: 
 

   
0 01bot zq C Z F t      (5) 

 
  constCCtF grz 

0
,0 we take that and form the following:

 
 

  01bot grq C Z 
     

(6) 

 
(6) by integrating the equation, we will have an equation that will determine the average 
consumption of ores by the length of: 
 

  01bot grq C Z       (7) 
 

Here Cgr, hgr , are the speed and height of the movement of the ridges
/gr gr grh h 

, 
respectively; -the coefficient taking into account the completeness of the wave profile. 
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Here Cgr, hgr , are the speed and height of the movement of the ridges
/gr gr grh h 

, 
respectively; -the coefficient taking into account the completeness of the wave profile. 

It is accepted that in most cases (1 ) 0.5    Taking this into account, we write (6) in 
the following form: 
 

0.5bot n gr grq C h
        

(8) 

 
So, when calculating the comparative cost of underground grays, it will be necessary to 

determine the height of underground grays and their speed of movement. 
The existing computational methods for determining Underground Discharge were 

recommended based on the experimental data of several researchers. Based on the analysis 
of these methods, Van-Rijn [3] method was seen to have a slight advantage over other 
proposed [6-16] methods. For this reason, the same method was chosen in improving the 
calculation method of tubular discharge in large graded channels [27-32]. According to this 
method, underground ores act as vibrations and oscillations on the underground surface. 
The comparative consumption of underground discharges is determined by the following 
equation. 
 

bot b b gq u C 
   

    (9) 

 

here bu is the speed of the particles of the underground whitish; g is saltation moving 

height; bC isthe volumetric concentration of the particle. 

b b gu C 
is expression for discrete particles above the flat bottom, which show the 

force of balance, which affects the moving particle, are divided by having based on the 
finite solution of the equation of motion: the forces of resistance and weight, the 
acceleration and lifting forces of the particle.The link obtained as a result of the finite 
solution is brought to the following view: 
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(10) 

 
The main basis of the method of it is reflected in the following views: 
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here   is the coefficient of fluid kinematic curvature; *u  -incoherent dynamic 
roughness velocity; *cru is dynamic speed of the beginning of the movement of flux, which 
is determined from the curve of Schields [5]. 
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Schields [5] to facilitate the detection of the dynamic speed of the start of the movement 
of tubular discharges.Summarizes its proposed curve graph with the following image: 

 

   2'
* 1cr avu S gd 

   
  (13) 

 
here θ –.The Schields parameter is defined as follows: 
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On the basis of the finite solution, the author proposed the following links of 

determining the comparative cost of ointments: 
 

0.7 0.5
*0.3b avd D T 

     
(15) 

  0.5 0.61.5 1b avu S gd T        
(16) 

*0.117 /bC T D
     (17) 

  0.5 1.5 2.1 0.3
*0.053 1 /bot avq S g d T D     (18) 

 
Van-Rijn Engelund - Hansen's method of calculation, which he created based on the results 
of Experimental Research [6], Ackers-White [7] and Meyer-Peter-Muller [8] the results of 
the comparison with the methods are included in Table 1. 
As a dimension representing the degree of compatibility of accounting information, the 
following parameter was adopted: 
 

( ) / ( )bot xis bot xaqR q q  .   (19) 

 
In Table 1, the following methods with Roman numerals are defined: 
I Van-Rijn ; II - Engelund - Hansen ; III - Ackers-White; IV - Meyer-Peter-Muller . 
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2 Method 

The aim of this study was to investigate the movement and size of the underground streams 
in the channels in the form of the trapezius. The trapezoidal channel is a Van-Rijn [3, 4]. As 
we have described above in the development of the calculation method of subsurface 
discharges, has a much more predominant aspect than other calculation methods in our 
opinion. It was aimed at improving the method of calculation. This method was developed 
on the basis of the data that the author conducted his experimental research in the stretch, 
which is very broad. And we use this method on the grunt channels in the form of a 
trapezium. 

To this end, laboratory research was conducted in the laboratory of the counter–
engineering and economic institute. 

In the laboratory, 4 series of experiments were carried out on a trapezoidal channel 
model with side slopes recovered from the sand (average diameter d=25 mm) inside the 
metal Lotto. The duration of the experiments was 5-6 hours. At the end of the experiment, 
we measured the weight (G) of the discharge collected in the sink by washing from the 
channel model in a weight meter. Also, the cross-sectional profile of the channel was 
measured. In the process of conducting experiments, such as studies on the washing of the 

stream / B , the movement of underground discharges in the first place was manifested 
from the places where the channel intersects with the slopes of the bottom and sides. As a 

result of this, slowly began a violation of the slope / B  of the side of the channel and the 
intensive movement of the axes. 

3 Results and Discussion 

When the experimental laboratory data on the study of tubular discharge are compared with 
the values calculated according to the Van-Rijn formula, it appears that the data obtained 

5

E3S Web of Conferences 264, 03070 (2021)	 https://doi.org/10.1051/e3sconf/202126403070
CONMECHYDRO - 2021



under laboratory conditions are slightly larger than the values obtained. The presence of 
this difference can depend on The Shape of the cut Trapezium, friction on the perimeter of 
the wetting, the slope of the side of the channel and other factors. 

We see that the ratio of the high level of the flow rate of the wetting perimeter to the 
width affects the depth of the bottom and hanging discharge transport process. Based on 
this (18), we enter the linkage ratio, and the link takes the following view for trapezium-
shaped channels: 

 

  0,5 1.5 2.1 0.3
*0.053 / 1 /bot avq B S g d T D      

(20) 

 
In this ratio, / B is the coefficients of slope to the side of the trapezoidal channel are 

directly involved. 
The obtained experiment proved the correctness of the hypothesis that the ratio of the 

high levels of / B  flow rate of the wet perimeter put forward by us when the data is 
processed statistically affects the process of Subsurface and suspended whitewash transport. 

In the conditions of trapezoidal ducts, the link for the full consumption of underground 
discharges (20) takes the following view: 

 

  0.5 1.5 2.1 0.3
*0.053 1 /bot avQ S g d T D       (21) 

 
(20) showed much more reliable results than the values calculated according to the 

formula Van-Rijn, Engelund - Hansen and Ackers-White compared to the values calculated 
according to the formula(figure 1). 

It was also seen that the values calculated by the formula (20) were compared with the 
values calculated by the Formula Van-Rijn, Engelund - Hansen and Ackers-White. 

4 Concessions 

So, considering the above-mentioned characteristics of underground ores in non-connected 
ground trapezoidal channels, the recommended connections can be used to predict ores in 
the channels. 
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Fig. 1.(20) comparison of the values calculated by the formula with the values calculated by the 
formulas of the following authors: 
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