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Abstract. The dynamic stability problem of an anisotropic fiber-
reinforced plate under increasing compressing load is considered in a 
geometrically nonlinear formulation using the Kirchhoff-Love’s shell 
theory. The problem is solved using the Bubnov-Galerkin method based on 
a polynomial approximation of the deflections in combination with a 
numerical method based on quadrature formulas. For a wide range of 
variations of physical, mechanical, and geometrical parameters, the 
dynamic behavior of the plate is studied. 

1 Introduction 

During the intense development of the modern industry, a reduction in the materials 
consumption of machine structures is one of the main problems of mechanical and civil 
engineering. For material saving, the need arises to manufacture thin-walled structures. The 
thinner the element, and the more flexible it is, the more strongly its susceptibility to 
buckling and loss of stability is manifested. The latter is accompanied by a catastrophic 
development of deformations and, as a rule, by a structural failure. From this standpoint, in 
the production of lightweight, durable and reliable structures, it is reasonable to use the 
materials that make it possible not only to improve their operating characteristics but also to 
create the structures unfeasible with traditional materials. Here, the calculation procedure 
and structural design involving the consideration of their actual properties are rather 
complicated. Today, efficient solution algorithms for nonlinear problems of dynamic 
stability of shells, panels, and plates are the most pressing issue. The problems with a 
similar mathematical formulation were considered in [1-12]. 
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2 Materials and methods 

To construct the mathematical model of the problem of dynamic stability of a plate made of 
a material having anisotropic properties in a geometrically nonlinear formulation, we use 
the classical Kirchhoff-Love’s shell theory. In this case, the normal and tangential forces 
𝑁𝑁𝑥𝑥, 𝑁𝑁𝑦𝑦, 𝑇𝑇, as well as the bending moments and torques 𝑀𝑀𝑥𝑥, 𝑀𝑀𝑦𝑦, 𝐻𝐻, have the form [13-17]: 

𝑁𝑁𝑥𝑥 = 𝐴𝐴11𝜀𝜀𝑥𝑥 + 𝐴𝐴12𝜀𝜀𝑦𝑦 + 𝐴𝐴16𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐵𝐵11𝜒𝜒𝑥𝑥 + 𝐵𝐵12𝜒𝜒𝑦𝑦 + 𝐵𝐵16𝜒𝜒𝑥𝑥𝑦𝑦 , 
𝑁𝑁𝑥𝑥 = 𝐴𝐴12𝜀𝜀𝑥𝑥 + 𝐴𝐴22𝜀𝜀𝑦𝑦 + 𝐴𝐴26𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐵𝐵12𝜒𝜒𝑥𝑥 + 𝐵𝐵22𝜒𝜒𝑦𝑦 + 𝐵𝐵26𝜒𝜒𝑥𝑥𝑦𝑦 , 

𝑇𝑇 = 𝐴𝐴16𝜀𝜀𝑥𝑥 + 𝐴𝐴26𝜀𝜀𝑦𝑦 + 𝐴𝐴66𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐵𝐵16𝜒𝜒𝑥𝑥 + 𝐵𝐵26𝜒𝜒𝑦𝑦 + 𝐵𝐵66𝜒𝜒𝑥𝑥𝑦𝑦,                          (1) 
𝑀𝑀𝑥𝑥 = 𝐵𝐵11𝜀𝜀𝑥𝑥 + 𝐵𝐵12𝜀𝜀𝑦𝑦 + 𝐵𝐵16𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐷𝐷11𝜒𝜒𝑥𝑥 + 𝐷𝐷12𝜒𝜒𝑦𝑦 + 𝐷𝐷16𝜒𝜒𝑥𝑥𝑦𝑦 , 
𝑀𝑀𝑥𝑥 = 𝐵𝐵12𝜀𝜀𝑥𝑥 + 𝐵𝐵22𝜀𝜀𝑦𝑦 + 𝐵𝐵26𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐷𝐷12𝜒𝜒𝑥𝑥 + 𝐷𝐷22𝜒𝜒𝑦𝑦 + 𝐷𝐷26𝜒𝜒𝑥𝑥𝑦𝑦, 
𝐻𝐻 = 𝐵𝐵16𝜀𝜀𝑥𝑥 + 𝐵𝐵26𝜀𝜀𝑦𝑦 + 𝐵𝐵66𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐷𝐷16𝜒𝜒𝑥𝑥 + 𝐷𝐷26𝜒𝜒𝑦𝑦 + 𝐷𝐷66𝜒𝜒𝑥𝑥𝑦𝑦 ,  

 
where the 𝐴𝐴𝑖𝑖𝑖𝑖’s are extensional stiffnesses, the 𝐵𝐵𝑖𝑖𝑖𝑖’s are bending-extension coupling 
stiffnesses, and the 𝐷𝐷𝑖𝑖𝑖𝑖’s are bending stiffnesses having the following form: 

𝐴𝐴𝑖𝑖𝑖𝑖 = ∑�̅�𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1),
𝐾𝐾

𝑘𝑘=1

 𝐵𝐵𝑖𝑖𝑖𝑖 =
1
2 ∑�̅�𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘2 − 𝑧𝑧𝑘𝑘−12 ),

𝐾𝐾

𝑘𝑘=1

 𝐷𝐷𝑖𝑖𝑖𝑖 =
1
3∑�̅�𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘3 − 𝑧𝑧𝑘𝑘−13 )

𝐾𝐾

𝑘𝑘=1

 

�̅�𝑄11 = 𝑄𝑄11𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃 + 2(𝑄𝑄12 + 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑄𝑄22𝑐𝑐𝑠𝑠𝑠𝑠4𝜃𝜃, 

�̅�𝑄12 = (𝑄𝑄11 + 𝑄𝑄22 − 4𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑄𝑄12(𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃 + 𝑐𝑐𝑠𝑠𝑠𝑠4𝜃𝜃), 

�̅�𝑄22 = 𝑄𝑄11𝑐𝑐𝑠𝑠𝑠𝑠4𝜃𝜃 + 2(𝑄𝑄12 + 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑄𝑄22𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃, 

�̅�𝑄16 = (𝑄𝑄11 − 𝑄𝑄12 − 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐3𝜃𝜃 + (𝑄𝑄12 − 𝑄𝑄22 + 2𝑄𝑄66)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑠𝑠𝑠𝑠3𝜃𝜃, 

�̅�𝑄26 = (𝑄𝑄11 − 𝑄𝑄12 − 2𝑄𝑄66)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑠𝑠𝑠𝑠3𝜃𝜃 + (𝑄𝑄12 − 𝑄𝑄22 + 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐3𝜃𝜃, 

�̅�𝑄66 = (𝑄𝑄11 + 𝑄𝑄22 − 2𝑄𝑄12 − 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑄𝑄66(𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃 + 𝑐𝑐𝑠𝑠𝑠𝑠4𝜃𝜃), 

𝑄𝑄11 =
𝐸𝐸1

1 − 𝜇𝜇12𝜇𝜇21
,𝑄𝑄12 =

𝐸𝐸1𝜇𝜇21
1 − 𝜇𝜇12𝜇𝜇21

=
𝐸𝐸2𝜇𝜇12

1 − 𝜇𝜇12𝜇𝜇21
, 

𝑄𝑄22 =
𝐸𝐸2

1 − 𝜇𝜇12𝜇𝜇21
,𝑄𝑄66 = 𝐺𝐺12 

 
Here 𝐾𝐾 is the number of plate layers, 𝐸𝐸1, 𝐸𝐸2 are the elastic modulus, 𝐺𝐺12 is the shear 

modulus, 𝜇𝜇12 and 𝜇𝜇21 are the Poisson ratios, 𝜃𝜃 is the angle characterizing the direction of 
the fibers relative to the axis 𝑂𝑂𝑂𝑂. 

The relations between the deformations in the median surface 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑦𝑦, 𝛾𝛾𝑥𝑥𝑦𝑦, 𝜒𝜒𝑥𝑥, 𝜒𝜒𝑦𝑦, 𝜒𝜒𝑥𝑥𝑦𝑦 
and displacements 𝑢𝑢, 𝑣𝑣, 𝑤𝑤 in directions 𝑂𝑂, 𝑦𝑦, 𝑧𝑧 have the form [18]: 
 

𝜀𝜀𝑥𝑥 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂 +

1
2 (
𝜕𝜕𝑤𝑤
𝜕𝜕𝑂𝑂)

2
,  𝜀𝜀𝑦𝑦 =

𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦 +

1
2 (
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦)

2
,  𝛾𝛾𝑥𝑥𝑦𝑦 =

𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝑂𝑂 +

𝜕𝜕𝑤𝑤
𝜕𝜕𝑂𝑂

𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦 , 

𝜒𝜒𝑥𝑥 = −
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑂𝑂2 ,  𝜒𝜒𝑦𝑦 = −

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2 ,  𝜒𝜒𝑥𝑥𝑦𝑦 = −2

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑂𝑂𝜕𝜕𝑦𝑦                                         (2) 

 
Substituting (1) and (2) into the equations of motion: 

2
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2 Materials and methods 

To construct the mathematical model of the problem of dynamic stability of a plate made of 
a material having anisotropic properties in a geometrically nonlinear formulation, we use 
the classical Kirchhoff-Love’s shell theory. In this case, the normal and tangential forces 
𝑁𝑁𝑥𝑥, 𝑁𝑁𝑦𝑦, 𝑇𝑇, as well as the bending moments and torques 𝑀𝑀𝑥𝑥, 𝑀𝑀𝑦𝑦, 𝐻𝐻, have the form [13-17]: 

𝑁𝑁𝑥𝑥 = 𝐴𝐴11𝜀𝜀𝑥𝑥 + 𝐴𝐴12𝜀𝜀𝑦𝑦 + 𝐴𝐴16𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐵𝐵11𝜒𝜒𝑥𝑥 + 𝐵𝐵12𝜒𝜒𝑦𝑦 + 𝐵𝐵16𝜒𝜒𝑥𝑥𝑦𝑦 , 
𝑁𝑁𝑥𝑥 = 𝐴𝐴12𝜀𝜀𝑥𝑥 + 𝐴𝐴22𝜀𝜀𝑦𝑦 + 𝐴𝐴26𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐵𝐵12𝜒𝜒𝑥𝑥 + 𝐵𝐵22𝜒𝜒𝑦𝑦 + 𝐵𝐵26𝜒𝜒𝑥𝑥𝑦𝑦 , 

𝑇𝑇 = 𝐴𝐴16𝜀𝜀𝑥𝑥 + 𝐴𝐴26𝜀𝜀𝑦𝑦 + 𝐴𝐴66𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐵𝐵16𝜒𝜒𝑥𝑥 + 𝐵𝐵26𝜒𝜒𝑦𝑦 + 𝐵𝐵66𝜒𝜒𝑥𝑥𝑦𝑦,                          (1) 
𝑀𝑀𝑥𝑥 = 𝐵𝐵11𝜀𝜀𝑥𝑥 + 𝐵𝐵12𝜀𝜀𝑦𝑦 + 𝐵𝐵16𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐷𝐷11𝜒𝜒𝑥𝑥 + 𝐷𝐷12𝜒𝜒𝑦𝑦 + 𝐷𝐷16𝜒𝜒𝑥𝑥𝑦𝑦 , 
𝑀𝑀𝑥𝑥 = 𝐵𝐵12𝜀𝜀𝑥𝑥 + 𝐵𝐵22𝜀𝜀𝑦𝑦 + 𝐵𝐵26𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐷𝐷12𝜒𝜒𝑥𝑥 + 𝐷𝐷22𝜒𝜒𝑦𝑦 + 𝐷𝐷26𝜒𝜒𝑥𝑥𝑦𝑦, 
𝐻𝐻 = 𝐵𝐵16𝜀𝜀𝑥𝑥 + 𝐵𝐵26𝜀𝜀𝑦𝑦 + 𝐵𝐵66𝛾𝛾𝑥𝑥𝑦𝑦 + 𝐷𝐷16𝜒𝜒𝑥𝑥 + 𝐷𝐷26𝜒𝜒𝑦𝑦 + 𝐷𝐷66𝜒𝜒𝑥𝑥𝑦𝑦 ,  

 
where the 𝐴𝐴𝑖𝑖𝑖𝑖’s are extensional stiffnesses, the 𝐵𝐵𝑖𝑖𝑖𝑖’s are bending-extension coupling 
stiffnesses, and the 𝐷𝐷𝑖𝑖𝑖𝑖’s are bending stiffnesses having the following form: 

𝐴𝐴𝑖𝑖𝑖𝑖 = ∑�̅�𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑘𝑘−1),
𝐾𝐾

𝑘𝑘=1

 𝐵𝐵𝑖𝑖𝑖𝑖 =
1
2 ∑�̅�𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘2 − 𝑧𝑧𝑘𝑘−12 ),

𝐾𝐾

𝑘𝑘=1

 𝐷𝐷𝑖𝑖𝑖𝑖 =
1
3∑�̅�𝑄𝑖𝑖𝑖𝑖(𝑧𝑧𝑘𝑘3 − 𝑧𝑧𝑘𝑘−13 )

𝐾𝐾

𝑘𝑘=1

 

�̅�𝑄11 = 𝑄𝑄11𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃 + 2(𝑄𝑄12 + 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑄𝑄22𝑐𝑐𝑠𝑠𝑠𝑠4𝜃𝜃, 

�̅�𝑄12 = (𝑄𝑄11 + 𝑄𝑄22 − 4𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑄𝑄12(𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃 + 𝑐𝑐𝑠𝑠𝑠𝑠4𝜃𝜃), 

�̅�𝑄22 = 𝑄𝑄11𝑐𝑐𝑠𝑠𝑠𝑠4𝜃𝜃 + 2(𝑄𝑄12 + 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑄𝑄22𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃, 

�̅�𝑄16 = (𝑄𝑄11 − 𝑄𝑄12 − 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐3𝜃𝜃 + (𝑄𝑄12 − 𝑄𝑄22 + 2𝑄𝑄66)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑠𝑠𝑠𝑠3𝜃𝜃, 

�̅�𝑄26 = (𝑄𝑄11 − 𝑄𝑄12 − 2𝑄𝑄66)𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑐𝑐𝑠𝑠𝑠𝑠3𝜃𝜃 + (𝑄𝑄12 − 𝑄𝑄22 + 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐3𝜃𝜃, 

�̅�𝑄66 = (𝑄𝑄11 + 𝑄𝑄22 − 2𝑄𝑄12 − 2𝑄𝑄66)𝑐𝑐𝑠𝑠𝑠𝑠2𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 𝑄𝑄66(𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃 + 𝑐𝑐𝑠𝑠𝑠𝑠4𝜃𝜃), 

𝑄𝑄11 =
𝐸𝐸1

1 − 𝜇𝜇12𝜇𝜇21
,𝑄𝑄12 =

𝐸𝐸1𝜇𝜇21
1 − 𝜇𝜇12𝜇𝜇21

=
𝐸𝐸2𝜇𝜇12

1 − 𝜇𝜇12𝜇𝜇21
, 

𝑄𝑄22 =
𝐸𝐸2

1 − 𝜇𝜇12𝜇𝜇21
,𝑄𝑄66 = 𝐺𝐺12 

 
Here 𝐾𝐾 is the number of plate layers, 𝐸𝐸1, 𝐸𝐸2 are the elastic modulus, 𝐺𝐺12 is the shear 

modulus, 𝜇𝜇12 and 𝜇𝜇21 are the Poisson ratios, 𝜃𝜃 is the angle characterizing the direction of 
the fibers relative to the axis 𝑂𝑂𝑂𝑂. 

The relations between the deformations in the median surface 𝜀𝜀𝑥𝑥, 𝜀𝜀𝑦𝑦, 𝛾𝛾𝑥𝑥𝑦𝑦, 𝜒𝜒𝑥𝑥, 𝜒𝜒𝑦𝑦, 𝜒𝜒𝑥𝑥𝑦𝑦 
and displacements 𝑢𝑢, 𝑣𝑣, 𝑤𝑤 in directions 𝑂𝑂, 𝑦𝑦, 𝑧𝑧 have the form [18]: 
 

𝜀𝜀𝑥𝑥 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂 +

1
2 (
𝜕𝜕𝑤𝑤
𝜕𝜕𝑂𝑂)

2
,  𝜀𝜀𝑦𝑦 =

𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦 +

1
2 (
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦)

2
,  𝛾𝛾𝑥𝑥𝑦𝑦 =

𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦 +

𝜕𝜕𝑣𝑣
𝜕𝜕𝑂𝑂 +

𝜕𝜕𝑤𝑤
𝜕𝜕𝑂𝑂

𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦 , 

𝜒𝜒𝑥𝑥 = −
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑂𝑂2 ,  𝜒𝜒𝑦𝑦 = −

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2 ,  𝜒𝜒𝑥𝑥𝑦𝑦 = −2

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑂𝑂𝜕𝜕𝑦𝑦                                         (2) 

 
Substituting (1) and (2) into the equations of motion: 

𝜕𝜕𝑁𝑁𝑥𝑥
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑝𝑝𝑥𝑥 = 𝜌𝜌ℎ

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2 ,

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝑁𝑁𝑦𝑦
𝜕𝜕𝜕𝜕 + 𝑝𝑝𝑦𝑦 = 𝜌𝜌ℎ

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑡𝑡2 , 

𝜕𝜕2𝑀𝑀𝑥𝑥
𝜕𝜕𝜕𝜕2 +

𝜕𝜕2𝑀𝑀𝑦𝑦

𝜕𝜕𝜕𝜕2 + 2
𝜕𝜕2𝐻𝐻
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 +

𝜕𝜕
𝜕𝜕𝜕𝜕 (𝑁𝑁𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕) + 

+
𝜕𝜕
𝜕𝜕𝜕𝜕 (𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 + 𝑁𝑁𝑦𝑦

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕) + 𝑞𝑞 + 𝑃𝑃(𝑡𝑡)ℎ

𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2 = 𝜌𝜌ℎ

𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2  

 
we obtain a system of nonlinear differential equations in partial derivatives that satisfies the 
boundary conditions of the problem (the edges are simply supported). The solution of this 
system is sought in the form: 

 

𝑢𝑢(𝜕𝜕,𝜕𝜕, 𝑡𝑡) = ∑ ∑𝑢𝑢𝑚𝑚𝑚𝑚(𝑡𝑡)𝑐𝑐𝑐𝑐𝑐𝑐
𝑚𝑚𝑚𝑚𝜕𝜕
𝑎𝑎 𝑐𝑐𝑠𝑠𝑠𝑠

𝑠𝑠𝑚𝑚𝜕𝜕
𝑏𝑏 ,

𝑁𝑁

𝑚𝑚=1

𝑀𝑀

𝑚𝑚=1

 

𝑣𝑣(𝜕𝜕,𝜕𝜕, 𝑡𝑡) = ∑ ∑𝑣𝑣𝑚𝑚𝑚𝑚(𝑡𝑡)𝑐𝑐𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝜕𝜕
𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐

𝑠𝑠𝑚𝑚𝜕𝜕
𝑏𝑏 ,                                       (3)

𝑁𝑁

𝑚𝑚=1

𝑀𝑀

𝑚𝑚=1

 

𝜕𝜕(𝜕𝜕,𝜕𝜕, 𝑡𝑡) = ∑ ∑𝜕𝜕𝑚𝑚𝑚𝑚(𝑡𝑡)𝑐𝑐𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝜕𝜕
𝑎𝑎 𝑐𝑐𝑠𝑠𝑠𝑠

𝑠𝑠𝑚𝑚𝜕𝜕
𝑏𝑏 ,

𝑁𝑁

𝑚𝑚=1

𝑀𝑀

𝑚𝑚=1

 

 
where  𝑢𝑢𝑚𝑚𝑚𝑚(𝑡𝑡), 𝑣𝑣𝑚𝑚𝑚𝑚(𝑡𝑡), 𝜕𝜕𝑚𝑚𝑚𝑚(𝑡𝑡), are the unknown functions of time. Substituting the 
approximating functions (3) into the resulting system of equations and performing the 
procedure of the Bubnov-Galerkin method, we obtain a system of nonlinear ordinary 
differential equations that, in turn, is integrated using the numerical method based on the 
use of quadrature formulas [19-20]. 

3 Results and Discussion 

Let’s consider the problem of dynamic stability of anisotropic fiber-reinforced rectangular 
plate of thickness ℎ with the sides 𝑎𝑎 and 𝑏𝑏, subjected to dynamic compression along one of 
the sides by force 𝑃𝑃(𝑡𝑡) = 𝑣𝑣𝑡𝑡 (𝑣𝑣 is the loading rate). 

In the calculations, the following parameters of the plastic (KAST-V) rectangular plate 
have been used: 𝐸𝐸1 = 25.5 𝐺𝐺𝑃𝑃𝑎𝑎, 𝐸𝐸2 = 14.91 𝐺𝐺𝑃𝑃𝑎𝑎, 𝐺𝐺12 = 4.41 𝐺𝐺𝑃𝑃𝑎𝑎, 𝜇𝜇12 = 0.2, 𝜌𝜌 =
1900 𝑘𝑘𝑘𝑘/𝑚𝑚3, 𝑎𝑎 = 𝑏𝑏 = 0.5 𝑚𝑚., ℎ = 0.5 𝑐𝑐𝑚𝑚., 𝜃𝜃 = 45𝑜𝑜, 𝑣𝑣 = 2 𝑀𝑀𝑃𝑃𝑎𝑎/𝑐𝑐. 

As a criterion determining the critical time, we assume that the sag of the deflection 
should not exceed a value equal to the thickness of the plate. In shell structures, the greater 
the critical time, the more stable it is to dynamic loads. The following graphs correspond to 
the results obtained for the midpoint of the hinged plate. On the graphs, 𝑚𝑚 (meter) is the 
dimension for the deflection, and 𝑐𝑐 (second) is for time. 

Figure 1 shows a graph of the changes in the deflections of the midpoints of the plates 
of various thicknesses. The results show that an increase in plate rigidity due to an increase 
in plate thickness leads to a proportional increase in the critical time value. 
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Fig.1. Dependence of the deflection on time for various values of the thicknesses of the plate 
1 - ℎ = 0.3 𝑠𝑠𝑠𝑠; 2 - ℎ = 0.4 𝑠𝑠𝑠𝑠; 3 - ℎ = 0.5 𝑠𝑠𝑠𝑠 

 
The various curves in Fig. 2 correspond to cases of changes in the deflections of the 

midpoint of a reinforced rectangular plate at different loading speeds. It should be noted 
here that in all cases, at the initial moments of time, the changes in the deflections are 
oscillations that are harmonic in shape, which begin to increase rapidly at certain points in 
time. 
 

 

Fig. 2. Dependence of the deflection on time for various values of the velocities of loading 

1 - 𝑣𝑣 = 2 𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠; 2 - 𝑣𝑣 = 2.5 𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠; 3 - 𝑣𝑣 = 3 𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠 

The influence of changes in the direction of the fibers of the reinforced plate on the 
dynamic process is shown in (Figure 3). As the angle of direction of the fibers increases 
from 0 to 45 degrees, an increase in the critical time is observed. The difference between 
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The influence of changes in the direction of the fibers of the reinforced plate on the 
dynamic process is shown in (Figure 3). As the angle of direction of the fibers increases 
from 0 to 45 degrees, an increase in the critical time is observed. The difference between 

the critical time values for single-layer plates with fiber directions of 0 and 45 degrees is 
20.7%. 

 

 

Fig.3. Dependence of the deflection on time for plates with different fiber orientations 
1 - 𝜃𝜃 = 0𝑜𝑜; 2 - 𝜃𝜃 = 15𝑜𝑜; 3 - 𝜃𝜃 = 30𝑜𝑜; 4 - 𝜃𝜃 = 45𝑜𝑜 

Modern reinforced composites are a set (composition) of several reinforced layers, each 
of which has its own mechanical properties. Thus, by changing the composite structure, it is 
possible to create constructions, the behavior of which can be predicted in advance. Their 
behavior depends on various factors such as loads, temperatures, and humidity. In this 
regard, the study of the behavior of laminated reinforced plates with different directions of 
fibers is of particular interest. Fig.4 shows the changes in the deflections of the midpoints of 
laminated reinforced plates made of KAST-V. Moreover, although all these plates have 
different fiber directions, however, their thickness is the same. The results show that for 
two-layer plates with fibers located at an angle of -45 degrees relative to the 𝑂𝑂𝑂𝑂 axis in one 
layer and 45 degrees in another, the critical time values are higher than the others. The 
layered fiber plate, which is parallel and perpendicular to the 𝑂𝑂𝑂𝑂 axis, has a lower critical 
time (i.e., it is less stable) than other plates with similar mechanical properties. The 
difference between the critical time values for the above two-layer plates is 21.8%. 

 

 

Fig. 4. Dependence of the deflection on time for sandwich plates with different fiber orientated layers 
1 - 0𝑜𝑜/90𝑜𝑜; 2 - 15𝑜𝑜/−15𝑜𝑜; 3 - 30𝑜𝑜/−30𝑜𝑜; 4 - 45𝑜𝑜/45𝑜𝑜; 5 - 45𝑜𝑜/−45𝑜𝑜 
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The results of studies of the behavior of reinforced plates for a wide range of changes in 
their mechanical, physical, and geometric parameters under dynamic compression of one of 
their sides are shown in Table 1. 

Table 1. 

№ 

Geometrical 
parameters 
of the plate  

Physical 
parameters Number 

of layers 
Fiber 

orientations 
The values 

of critical time 
𝑎𝑎,𝑚𝑚 𝑏𝑏,𝑚𝑚 ℎ, 𝑠𝑠𝑚𝑚 𝑞𝑞,𝑃𝑃𝑎𝑎 

𝑣𝑣,  
𝑀𝑀𝑃𝑃𝑎𝑎
/𝑠𝑠 

1 0.5 0.5 0.5 100 2 1 450 3.2798 
2 0.5 0.5 0.5 100 2 1 450 3.2798 
3 0.6 0.5 0.5 100 2 1 450 3.3358 
4 0.7 0.5 0.5 100 2 1 450 3.5262 
5 0.5 0.5 0.4 100 2 1 450 2.0238 
6 0.5 0.5 0.3 100 2 1 450 0.9192 
7 0.5 0.5 0.5 200 2 1 450 3.2110 
8 0.5 0.5 0.5 300 2 1 450 3.1422 
9 0.5 0.5 0.5 100 2.5 1 450 2.6268 

10 0.5 0.5 0.5 100 3 1 450 2.1858 
11 0.5 0.5 0.5 100 2 1 00 2.5984 
12 0.5 0.5 0.5 100 2 1 150 2.7640 
13 0.5 0.5 0.5 100 2 1 300 3.1046 
14 0.5 0.5 0.5 100 2 2 00/900 2.5984 
15 0.5 0.5 0.5 100 2 2 150/-150 2.7860 
16 0.5 0.5 0.5 100 2 2 300/-300 3.1396 
17 0.5 0.5 0.5 100 2 2 450/-450 3.3242 
18 0.5 0.5 0.5 100 2 3 450/-450/450 3.2900 

4 Conclusion 

The study of the problems of the dynamic stability of anisotropic reinforced plates shows 
that when subjected to dynamic compression along one of their sides, the critical time 
values mainly depend on the direction of the reinforced fibers in each layer. In single-layer 
and double-layer plates, the difference in the critical time values depending on the direction 
of the reinforced fibers in places is 20.7% and 21.8%, respectively. An analysis of the 
results shows that the most resistant to these types of loads are double-layer plates with 
fibers located at an angle of - 45 degrees relative to the 𝑂𝑂𝑂𝑂 axis in one layer and 45 degrees 
in another. 
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