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Abstract: in the conditions of significant variability of processed 
polymetallic ores of the Akbastau Deposit, it is essential to minimize the 
variability of technological indicators of enrichment. Due to the 
multifactorial nature and non-linearity of the flotation process, the use of 
classical regression models does not provide the necessary level of 
reliability, therefore, there is a significant variability in the extraction of 
precious metals. To solve this problem, the paper substantiates the use of 
the neural network modeling methodology, which allows to estimate the 
variability of gold and silver extraction depending on the variation of the 
content of metals in the ore. 

1 Introduction 

Traditionally, the problem of variability is solved by calculating the regression dependence 
between the parameters of the source ore and the extraction of metal, but this approach does 
not always lead to positive results [1-3]. Due to the multifactorial nature and non-linearity 
of the flotation process, the use of classical regression models does not provide the 
necessary level of reliability, which is why there is a significant variability in the extraction 
of precious metals [4,5]. 

2 Main part 

2.1 Multiple regression equation 

To solve this problem, technological indicators for silver and gold in the processed ores 
from the Akbastau Deposit for the period from 22.01.2018 to 22.07.2018 were analyzed. 
The statistical array included 315 observations. Statistical estimates of the studied 
parameters are presented in Table 1 [6-8]. 

Table 1. Statistical estimates of the studied parameters. 

Conventional signs Parameter Average Min. Max. Std. dev. 
aCu Content of Cu in ore, % 1.19 0.89 2.0 0.21 
aZn Content of Zn in ore, % 0.88 0.13 3.0 0.79 
aAu Content of Au in ore, % 0.70 0.40 2.1 0.22 
aAg Content of Ag in ore, % 15.03 4.30 55.3 13.60 
bCu Content of Cu in concentrate, % 16.24 10.39 20.7 2.46 
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bZn Content of Zn in concentrate, % 4.87 2.57 9.2 1.31 
bAu Content of Au in concentrate, % 4.99 2.10 11.8 2.45 
bAg Content of Ag in concentrate, % 94.34 43.80 449.3 67.77 
ECu Recovery of Cu, % 87.84 72.44 97.5 6.39 
EZn Recovery of Zn, % 57.31 9.45 100.0 30.00 
EAu Recovery of Au, % 44.97 22.77 95 16.69 
EAg Recovery of Ag, % 48.88 18.47 88.5 15.94 

g Сu concentrate yield, % 6.51 4.02 10.4 1.16 

In the analysis of the source data, there is considerable variability in the extraction of 
precious metals: gold is in the range of 23-95% (the content of metal in the ore is 0.4-2.1 
g/t), silver in the range of 20-88% (the content of metal in the ore is 4.3-55.3 g/t) [9] 

The correlation matrix for the studied array is presented in Table 2. 

Table 2. Correlation matrix. 
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The correlation matrix shows a negative correlation between the content of precious 
metals in the ore and their extraction into the copper concentrate [10,11]. At the same time, 
there is a strong positive correlation between the metal content in the ore and in the copper 
concentrate, which is also quite evident in the trends shown in Figures 1 and 2. 

Fig. 1. Trends in the dynamics of changes in technological indicators for silver. 

Fig. 2. Trends in the dynamics of changes in technological indicators for gold. 
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The dispersion of values in the graph in Figure 3 show the difficulty in identifying the 
causes of significant variability in the extraction of precious metals.  

Fig. 3. Dependency of silver extraction from the variation of copper content in the ore. 

An attempt was made to classically calculate the multiple regression equation, the 
results of which are presented in Table 3.  

Table 3. The results of the regression for the extraction of silver. 

 BETA S.E.M B S.E.M t(85) p-equation 
Constant term   54.1991 9.347510 5.79824 0.000000 

aCu 0.133638 0.080486 10.3314 6.222296 1.66038 0.100522 
aZn 0.198072 0.226928 3.9898 4.571064 0.87284 0.385211 
aAu -0.145069 0.088430 -10.5566 6.435048 -1.64049 0.104598 
aAg -0.779972 0.235035 -0.9142 0.275472 -3.31854 0.001334 

The term "BETA" refers to the equation's regression coefficients on a standardized 
scale, i.e., according to Equation 1. 

ε = 0.13αCu + 0.2αZn – 0.15αAu  ̶  0.78αAg.   (1) 
Based on the values of standardized coefficients, we can make a conclusion. The silver 

content in the ore, compared to the content of other elements in the ore, significantly affects 
the extraction of silver. The influence of other elements on the output function is not 
significant, according to Kolmogorov’s criterion [12]. Moreover, the negative correlation 
between the content of silver in the ore and the extraction of metal is technologically 
difficult to explain.  

The designation "B" refers to the natural values of the coefficients in the regression 
equation, i.e., the calculated equation is represented as Equation 2. 

ε = 54.2 + 10.3αCu + 3.99αZn – 10.6αAu – 0.91αAg  (2) 
However, the low value of the multiple regression coefficient of the resulting equation 

R = 0.69 should be specifically noted. 
The information estimate of the obtained model is H=R2 = 0.46, i.e., 46 %. 
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The term "BETA" refers to the equation's regression coefficients on a standardized 
scale, i.e., according to Equation 1. 

ε = 0.13αCu + 0.2αZn – 0.15αAu  ̶  0.78αAg.   (1) 
Based on the values of standardized coefficients, we can make a conclusion. The silver 

content in the ore, compared to the content of other elements in the ore, significantly affects 
the extraction of silver. The influence of other elements on the output function is not 
significant, according to Kolmogorov’s criterion [12]. Moreover, the negative correlation 
between the content of silver in the ore and the extraction of metal is technologically 
difficult to explain.  

The designation "B" refers to the natural values of the coefficients in the regression 
equation, i.e., the calculated equation is represented as Equation 2. 

ε = 54.2 + 10.3αCu + 3.99αZn – 10.6αAu – 0.91αAg  (2) 
However, the low value of the multiple regression coefficient of the resulting equation 

R = 0.69 should be specifically noted. 
The information estimate of the obtained model is H=R2 = 0.46, i.e., 46 %. 

Thus, we can conclude that it is rather unpromising to use classical regression models 
for flotation. 

2.2 Neural network modeling 

In regard to the studied array, the neural network model GRNN 4:4-46-2-1:1 (8) was 
calculated, the architecture of which is presented in Table 4 [13]. 

The output function is extraction of silver. Input variables are marked in the table of 
sensitivity of output functions to variations of initial features (Table 5). Statistical estimates 
of the model are presented in Table 6. 

Table 4. Architecture of the GRNN 4:4-46-2-1:1 (8) neural network model. 
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Table 5. Sensitivity of the output function to variations in the initial features. 

Functions aCu aZn aAu aAg 
Correlation 1.139 1.280 1.167 1.201 

Rank 4 1 3 2 

The results of the analysis of the sensitivity of the output function to variations in the 
initial characteristics show that the greatest influence on the variability of silver extraction 
is the variation in the content of zinc in the ore. 

Table 6. Statistical estimates of the GRNN 4:4-46-2-1:1 (8) model. 

Statistical estimations Value 
Average 48.88 
St. dev. 15.85 
Average error mean -0.254 
Standard deviation of error 9.363 
Mean absolute error 7.328 
Correlation 0.820 

The adequacy of the obtained model is estimated by the correlation coefficient R=0.82. 
The neural network model allows to obtain generalized response functions, i.e., an 

evaluation of the variability of silver extraction based on the variation in the content of 
metals in the ore (Fig. 4-6). The curves shown in the figures are described by the equations 
shown in the figure captions. 
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Fig. 4. Estimation of the variability of silver extraction from the variation of the copper content in the 
ore. 

Fig. 5. Estimation of the variability of silver extraction from the variation of the zinc content in the 
ore. 
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Fig. 6. Estimation of the variability of silver extraction from the variation of the silver content in the 
ore. 

The decrease in silver extraction with an increase in the copper content in the ore is 
higher (Fig. 4) is probably due to the increased sulfide content and the development of 
electrochemical corrosion processes in the ore body [14].  

The function of the silver extraction reaction to the variation of the zinc content in the 
ore (Fig. 5) clearly reflects the presence of observations of copper and copper-zinc ores in 
the initial statistical array. 

The function of the silver extraction reaction to the variation of the silver content in the 
ore (Fig. 6) shows that copper ores are characterized by a decrease in the extraction of 
silver into the copper concentrate with an increase of the silver content in the ore. This 
observation requires additional research. For copper-zinc ores, the classical dependence 
εAg = f(αAg) was observed. 

The results of the calculation of the multiple regression equation for gold recovery are 
presented in Table 7. 

Table 7. The results of the regression for the extraction of gold. 

 BETA S.E.M B S.E.M t(85) p-equation 
Constant term   43.61820 12.19678 3.576206 0.000578 

aCu -0.003342 0.100326 -0.27045 8.11895 -0.033311 0.973505 
aZn -0.253528 0.282865 -5.34581 5.96440 -0.896286 0.372631 
aAu 0.197432 0.110228 15.03930 8.39655 1.791128 0.076832 
aAg -0.224496 0.292969 -0.27543 0.35944 -0.766280 0.445633 

Equation 3 on a standardized scale shows that the parameters of the source ore do not 
affect the extraction of gold. 

ε =  ̶ 0.003αCu  ̶  0.25αZn + 0.2αAu  ̶  0.22αAg.  (3) 
On a natural scale, the form of Equation 3 accords with Equation 4:  

ε = 43.6 – 0.27αCu  ̶  5.35αZn + 15αAu – 0.28αAg.  (4) 
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Thus, the regression equation on a standardized scale shows no influence of the initial 
ore parameters on gold extraction (according to Kolmogorov’s criterion) [15]. Due to that, 
an MLP 4:4-10-5-1:1 (10) neural network model (multi-layer perceptron) was calculated 
for the studied array, the architecture of which is shown in Table 8. 

The output function is extraction of gold. Input variables are marked in the table of 
sensitivity of output functions to variations of initial features (Table 5). Statistical estimates 
of the model are presented in Table 10. 

Table 8. Architecture of the MLP 4:4-10-5-1: 1 (10) neural network model. 
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Table 9. Sensitivity of the output function to variations in the initial features. 

Functions aCu aZn aAu aAg 
Correlation 1,457 1,271 1,162 1,354 

Rank 1 3 4 2 

The results of the analysis of the sensitivity of the output function to variations in the 
initial characteristics show that a variation in the content of copper in the ore has the 
greatest influence on the variability of gold recovery. 

Table 10. Statistical estimates of the MLP model 4:4-10-5-1:1 (10). 

Statistical estimations EAu 
Average 45.0 
St. dev. 16.6 
Average error mean 1.371 
Standard deviation of error 12.88 
Mean absolute error 9.710 
Correlation 0.660 

The adequacy of the obtained model is evaluated by the correlation coefficient R=0.82. 
The neural network model allows to obtain generalized response functions, i.e., an 

evaluation of the variability of gold extraction based on the variation in the content of 
metals in the ore (Fig. 7-9). The curves shown in the figures are described by the equations 
shown in the figure captions. 
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metals in the ore (Fig. 7-9). The curves shown in the figures are described by the equations 
shown in the figure captions. 

 

 

 

 

 

 

 

Fig. 7. Estimation of the variability of gold extraction based on the variation of the copper content in 
the ore. 

Fig. 8. Estimation of the variability of gold extraction based on the variation of the zinc content in the 
ore. 
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Fig. 9. Estimation of the variability of gold extraction based on the variation of the gold content in the 
ore. 

The function of the reaction of gold extraction to the variation in the zinc content in the 
ore (Fig. 8) clearly reflects the presence of observations of copper and copper-zinc ores in 
the initial statistical array. 

The function of reaction of gold extraction to the variation of gold content in the ore 
(Fig. 9) shows that a decrease in gold extraction in the copper concentrate with increased 
gold content in the ore is typical for copper ores, like as it was with silver. This observation 
requires additional research and may be a consequence of the genetic features of the 
deposit. For copper-zinc ores, the classical dependence εAu = f(αAu) was observed. 

2.3 Laboratory tests 

Based on the results of this study, a series of experiments in controlled conditions were 
conducted. The experiments consider the operation regime of a plant that processes ore 
from Akbastau in order to assess the variability of technological indicators based on the 
variation of the content of useful elements in the ore. For this task, 5 ore samples with 
different metal content were taken from this deposit. The chemical composition of the 
samples is shown in Table 11. Technological indicators of enrichment for a series of 
experiments are presented in Table 12. 

Table 11. Chemical composition of initial sample. 

Content Designation of sample 
 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Cu. % 0.92 0.97 1.16 1.42 1.54 
Zn. % 0.94 0.89 1.42 0.57 0.23 
Au. г/т 1.08 1.24 1.74 0.42 2.07 
Ag. г/т 29.34 35.7 38.37 10.04 37.62 
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Content Designation of sample 
 Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Cu. % 0.92 0.97 1.16 1.42 1.54 
Zn. % 0.94 0.89 1.42 0.57 0.23 
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Table 12. Technological indicators of enrichment. 

Designation 
of sample 

Сu 
concentrate 

yield, % 
Content in concentrate, % Recovery in concentrate, % 

  Cu, 
% 

Zn, 
% 

Au, 
г/т 

Ag, 
г/т 

Cu, 
% 

Zn, 
% 

Au, 
% 

Ag, 
% 

Sample 1 5.59 12.70 5.26 5.84 200.34 77.18 31.29 30.24 38.17 
Sample 2 5.68 13.53 5.04 6.99 271.14 79.24 32.14 32.01 43.14 
Sample 3 5.91 14.96 9.17 11.79 307.02 76.24 38.17 40.06 47.29 
Sample 4 6.40 18.59 2.75 2.75 81.40 83.79 30.85 41.97 51.89 
Sample 5 6.67 19.59 2.12 10.61 264.92 84.86 61.40 34.19 46.97 

According to the obtained data presented in Table 12, it can be concluded that 
significant variability of technological indicators was observed for these samples. There is a 
correlation between the variability of the obtained technological indicators and the variation 
of useful components in the initial ore, according to the estimates described in the course of 
theoretical research using neural network modeling. For laboratory-obtained extraction 
indicators and those obtained by neural network modeling, the correlation value R amounts 
to 0.77 and 0.90 for gold and silver, respectively.  

3 Conclusion 

The failure of the classical approach in estimating the variability of recovery of precious 
metals by calculating multiple regression equations was shown. The most effective way to 
describe the complex multifactorial nature and non-linear character of the flotation objects 
is to use the neural network modeling methodology. Relatively high correlation values of 
the extraction of precious metals obtained in laboratory conditions with the theoretical 
extraction, which was calculated using the method of neural network modeling, were found. 
 
The work was funded by Russian Science Foundation (Project No. 19-17-00096). 
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