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Abstract. Aiming at the problem that different temperatures and working modes affect the parameter
identification and state of charge (SOC) estimation of decommissioned lithium batteries, a new method based

on the second-order RC equivalent circuit model combined with the recursive least square method (RLS) is
proposed to introduce the forgetting factor , and combined with the extended Kalman filter algorithm (EKF)

to realize the method of online parameter identification of decommissioned lithium batteries and the optimal
estimation of SOC. In order to solve the problem of obtaining the optimal solution of the error covariance

matrix and the measurement noise covariance matrix in EKF, the particle swarm optimization algorithm (PSO)

is used to optimize online to further improve the SOC prediction accuracy. The results show that the joint
optimization algorithm can accurately identify the parameters and SOC values of retired lithium batteries,
which is helpful to realize the echelon utilization of retired lithium batteries.

1 Introduction

With the rapid development of new energy vehicles, when
the performance of lithium power batteries drops to 80%
of the original performance, they will not be able to meet
the standards for electric vehicles. Therefore, a large
number of retired lithium batteries will be produced every
year. Retired lithium power batteries contain a large
amount of heavy metals and organic matter, toxic gases
produced by electrolytes and their conversion products,
which will seriously threaten the environment and human
health, and cause huge pressure on the social and
ecological environment. Therefore, recycling and
cascading lithium power batteries not only create
economic value for society, but also reduce waste
discharge for society, which is a major ecological
construction task. Lithium-ion batteries are relatively
active, and the internal characteristics of the battery will
change under the influence of ambient temperature and
working mode, especially the internal parameters of
decommissioned lithium batteries change more obviously.
Therefore, a sophisticated battery parameter identification
and SOC prediction model is established for
decommissioning. The echelon utilization of lithium
batteries is of great significance [1].

At present, there are many methods for parameter
identification and SOC prediction of lithium batteries.
Literature [2] proposed a lithium battery SOC estimation
method based on parameter identification and adaptive
extended Kalman filter algorithm (AEKF). This method

can achieve better accuracy and convergence speed under
simulated conditions, but ignores the noise coordination.
The automatic optimization process of the optimal
solution of the variance matrix adds a certain amount of
tasks. Literature [3] proposed the use of rolling time
domain algorithm (MHE) combined with EKF algorithm,
using the idea of rolling time domain window, integrating
the window information of the previous N moments to
estimate the current SOC value, by establishing an arrival
function and adding an M estimator instead The
measurement error effectively improves the estimation
accuracy, but the time complexity is high. Literature [4]
proposed a staged lithium-ion battery state-of-charge
estimation method. According to the working state of the
battery system, the estimation process is divided into the
initial stage, the middle stage of charge and discharge, and
the later stage of charge and discharge. Different methods
are used for different stages. The relevant parameters in
the ampere-hour integral formula can be corrected and
compensated, although it can improve the accuracy and
stability of the estimation, it is not practical.

Based on the advantages and disadvantages of the
above research, and considering the battery temperature
and SOC application characteristics, this paper conducts
research and analysis on the performance of
decommissioned lithium batteries under different working
conditions, and establishes a second-order RC equivalent
circuit model that can truly simulate decommissioned
lithium. The internal dynamic characteristics of the battery,
and the accuracy of the model are verified by exponential
fitting of the actual measured voltage and comparison of
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the identification results. In order to further improve the
identification results and the accuracy of the SOC
prediction, this paper adopts EKF and the RLS algorithm
with forgetting factor. The joint method is used to estimate
the SOC value, and the initial values of the error
covariance matrix and the measurement noise covariance
matrix in the EKF are globally optimized online through
PSO to obtain the optimal parameters.

2 A battery equivalent circuit model
based on the forgetting factor recursive
least square method

The dynamic circuit model of the decommissioned lithium
battery established in this paper is shown in Figure 1. This
model is a second-order RC model. According to the
voltage characteristics of the decommissioned lithium
battery in the actual working process, the dual RC inertia
link is used to simulate the internal polarity of the lithium
battery. The slow rise of voltage caused by chemical
reaction [5]. Among them: Uoc means open circuit voltage,
UL means terminal voltage, I means current, Ry means
ohmic resistance, R; means concentration polarization

resistance, R, means electrochemical polarization
resistance, C; means concentration polarization
capacitance, C; means polarization capacitance .
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Figure 1. Battery equivalent circuit model

According to Kirchhoff’s law, the expression of the
model can be obtained.

Uy =Uoe[SOC()]-U, -Uy - 1(1) R,
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The SOC value of the battery can be obtained by the
ampere-hour integration method, and Q, represents the
actual capacity of the battery.

i
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In order to improve the accuracy and speed of
parameter identification, the correction function of RLS is
used to correct the estimated value at the previous time
through the new measured data, so as to obtain the
estimated value at the current time to realize online
parameter identification. Although the RLS algorithm is

simple and stable, with the increase of data, the correction
ability will decrease, which will affect the accuracy of
identification. Therefore, the forgetting factor A is
introduced into the algorithm to increase the impact of
new data on the system, so that the algorithm can respond
quickly and converge to near the actual value. By
adjusting the value of A, the initial value of the covariance
matrix of the recursive least squares method is updated to
calculate the gain matrix Ko. Then update the parameters
to be estimated at time k. Finally, the values of parameters
Ro, Ry, Ry, Cs, and C; in the equivalent circuit model are
identified.
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3 SOC prediction of decommissioned
lithium battery based on PSO-EKF

3.1. Principle of SOC prediction based on EKF
algorithm

The EKF algorithm is mainly to linearize the nonlinear
system. The higher-order term is omitted through Taylor
series expansion, and only the first-order term is retained,
and the state-space equation of the nonlinear system is
linearized [6,7]. The linearized system state equation and
observation equation are as follows.

x(k+1)= Ak) - x(k)+ B(k) - u(k) + w(k)
yv(k)=C(k) -x(k)+ D(k)-u(k) +v(k)

Among them, the parameters in the equation are as
follows

_F Gtk
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k) =————|(x(k)u(k
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In the formula, X(k+1) is the state matrix of the
systemattime k+1, V(k) isthe output variable of the
system, (k) isthe input variable of the system, W(k)

and V(k) are the system process noise and observation

noise, respectively, and Q and R respectively represent
their covariance. The system corrects the predicted value
of the state variable and the covariance matrix according
to the actual output value to obtain the optimal filter value

[8].
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Based on the second-order RC equivalent circuit
model, this paper takes current and terminal voltage as the
input variable u and output variable y of the EKF, and the
SOC, Uy, and U, of the decommissioned lithium battery
as the state variables of the EKF. Then the linear discrete
state space equation of the battery model is obtained.

x(k +1) = A-x(k) + B -u(k) .
y(k) = C-x(k)+ D - u(k) ®)
x(k) =[SOC(k) U, (k) U, (k)

u(k) = (k) ©)
y(k)=U,(k)
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oo [Uoc(socuf))
SOC(k)
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period,

When the values of A, B, C, and D are determined,
online joint estimation of model parameters can be
performed according to the EKF algorithm. EKF has good
adaptability. If the initial value error is large, the state can
be adjusted by adjusting the noise variance Q and R. The
variable finally converges to near the true value after
multiple iterations, which makes the algorithm more
robust. When Q takes a smaller value or R takes a larger
value, the gain will be smaller, which will weaken the
correction effect of the actual value on the predicted value
[9], so the values of Q and R need to be adjusted
continuously. However, the manual adjustment range is
large, it takes a long time, and the effect is difficult to
achieve the ideal.

1 _1} D=-Ry,

7,=R-C, , T is the sampling

3.2. Use PSO to optimize EKF noise matrix

PSO is a biological evolutionary algorithm. Each particle
in the population represents a parameter that needs to be
optimized in the algorithm, corresponding to a fitness
value determined by the fitness function [10]. In this paper,
the absolute error between the predicted value of the
prediction equation and the actual value is used as the
fitness value, and then the position and velocity of the
particles are updated according to the fitness value. The
update process of particle velocity and position in standard
PSO is as follows.

10

v d(k+1):w*vidac)+c1r1(pid(k>—xid<k))+c2r2<pgd<k>—xid(k>>( )
iy (k+1) = x,y (k) + vy (k +1) (11)
o=0, -0, - wmin) * t/ Tinax (12)

In the formula, i=1,2...,m; cl, c2 are learning factors;
rl, 12 are random numbers between [0,1]; w is the

constant of inertia; k is the number of times; t and Tmax

are the number of iterations and the maximum iteration,
respectively frequency.

In order to simplify the calculation, the parameters to
be optimized are combined into a vector vector.

£=(Q.R)! (13)

4 Algorithm verification and analysis

The experiment selected a decommissioned lithium iron
phosphate battery with a nominal voltage of 3.2V and a
nominal capacity of 2.7Ah as the object, and the hybrid
pulse power Characteristic (HPPC) was performed on the
battery under test at a high temperature of 60°C to verify
the feasibility of the PSO-EKF algorithm. This mode
mainly simulates the working conditions of battery
charging-discharging-shelving-discharging to test the
pulse ability of the battery, and the pulse ability is
essentially the change of the battery internal resistance.
Different temperatures, currents, etc. will cause the battery
polarization internal resistance to change Therefore, the
HPPC mode can be used as a method to consider the health
of the battery, which provides value for the echelon
utilization and safety research of decommissioned lithium
batteries. The data acquisition platform is shown in Figure
2, which mainly collects data such as battery terminal
voltage, terminal current, and SOC.

Lithium iron phosphate battery

incubator

Host computer monitoring

High-performance battery detection system
Figure 2. Data acquisition platform

Figure 3 shows the result of PSO optimization of EKF
noise matrix under 60 °C  high temperature HPPC

conditions, population size M=30, learning factor
cl1=c2=2, number of iterations Tmux =50, maximum

inertia weight @, = 0.9, and minimum inertia weight
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Figure 3. Number of iterations and optimal solution
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It can be seen from Figure 3 that the global optimal
fitness value is obtained after 5 iterations and tends to be
stable. As the number of iterations increases, the fitness
value gradually decreases, and finally a stable optimal
solution is obtained.

Figure 4 shows the parameter identification results of
decommissioned lithium batteries. Figure 5 shows the
comparison between the not optimized EKF noise matrix
and the PSO algorithm optimized EKF noise matrix.
Figure (a) shows the comparison of the SOC prediction
results. It can be seen from the figure that it is not
optimized The algorithm has a large error at the beginning
of discharge and when the discharge SOC is lower than
40%, and it cannot track well. The optimized result of the
PSO algorithm can effectively overcome the interference
of noise, which is basically close to the measured value,
and has better tracking performance.
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Figure 4. Parameter identification results
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Figure 5. Algorithm comparison

Figure (b) is the error comparison. It can be seen that
the optimized error is significantly smaller than the not
optimized error. It can be seen from Table 1 that the
maximum error between the not optimized algorithm and
the true value is up to 1.5%, while the maximum error of

the SOC optimized by the PSO algorithm is only 0.8%.
Through comparison, it can be seen that the EKF model
based on the PSO algorithm can more accurately estimate
the decommissioned lithium The SOC value of the battery
further improves the accuracy of the SOC estimation.

Table 1. Algorithm comparison under HPPC conditions

Parameter Average error Maximum error
EKF 1.53%
PSO-EKF 0.3% 0.8%

5 In conclusion

This paper proposes a PSO-EKF method that can
accurately identify the parameters of the decommissioned
lithium battery model and estimate the SOC value. The
results show that, compared with the not optimized EKF
filter algorithm, the SOC estimation accuracy of the PSO-
EKF filter algorithm is higher. After the algorithm
converges, the average error is only 0.3%, and it has a
better tracking ability. It laid the foundation for the
echelon utilization of retired lithium batteries, and at the

same time realized "turning waste into treasure", which
greatly improved the utilization rate of resources. It
conforms to the concept of sustainable development,
realizes the use of clean energy and the re-creation of
value, and is of great significance to the construction of
ecological civilization.
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