
Open-source project recommendation model

Huihui Zhu, Pu Peng*, and Huan Xu
East China Normal University, China

Keywords: github, recommendation model, collaborative filtering,
light-GCN, embedding.

Abstract. Open-source has become a very important topic in this era. the
number of open-source projects on github Shows a huge growth trend.
Facing so many open-source projects, it’s not easy to find the projects and
topics that the developers interested in. so, it is necessary to model the user's
behavior data,So as to automatically recommend projects to developers. to
explore this problem, we constructed a dataset of 90w users and 461w
projects based on github log and did a lot of cleaning work on the data.
finally, we model the data through the improvement of the Light-GCN
model to recommend relevant open-source projects to users. The
experimental results show that the accuracy of our model is more than 15%.

1 Introduction
As the world’s largest code hosting platform, the data shows that in the past 2020, there

were 56 million developers establisged over 60 million projects, these projects cover many
areas of our real life. Facing so Many projects and communities, it is hard for developers to
choose the project among tens of millions of open source projects which they are instrested
in, so it is necessary to build a recommendation system based on github log data.

In recent years, recommendation algorithms have achieved good applications in both
academia and industry, such as The early BPR[2] matrix factorization method, recently, some
researchers have applied GCN to the recommendation system, such as DGCF[4] and
NGCF[3], light-GCN[1] eliminates redundant nonlinear transformations and feature changes
in NGCF,It makes the model more concise and easy to train.

collaborative filtering(CF), which focuses on exploiting the past user-item interactions to
achieve the prediction, remains to be a fundamental task towards effective personalized
recommendation [9,10,11,12],However, few people apply the recommendation model to
open -source Project recommendation.

We proposes a GCN-based open-source project recommendation model, which builds
based on user behavior data. In addition, this model has better recall while ensuring training
speed.

The model has been applied to github behavior log data and achieved good results. The
other parts of this article are organized as follows: Section 2 introduces the model , and

* Corresponding author: ppu@cc. ecnu. edu. cn

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 268, 01061 (2021) https://doi.org/10.1051/e3sconf/202126801061
VESEP2020

Section 3 gives the experimental steps And the results. finally, the finally part summarizes
the full paper.

2 Methodologies

2.1 Data aggregation

When we built the recommendation dataset, we found that the data is extremely sparse, which
will affect The performance of embedding, and sparseness will also affect the recommended
performance. We use data aggregation to solve such problem, More specifically, We extract
the features of open source projects from README and label, and then compare the
similarities of these features,When the similarity between them is close to a certain threshold,
the two projects will be merged into one project. This alleviates the extremely sparse nature
of the data.

2.2 Embedding

Various methods of graph embedding have been proposed in the machine learning literature
[13,14,15].

The NGCF and DGCF are all inherited from GCN, The basic idea of GCN is to learning
representation for nodes by smoothing features over the graph [7,8], NGCF contains the
characteristics of GCN For operations such as transformation and nonlinear activation
functions, the propagation rules of NGCF are define as:

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘+1) = 𝜎𝜎𝜎𝜎 �𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘) + ∑  𝑖𝑖𝑖𝑖∈𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢
1

�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢∥ℕ𝑖𝑖𝑖𝑖|
�𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘) + 𝐖𝐖𝐖𝐖2�𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘) ⊙ 𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘)���

𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘+1) = 𝜎𝜎𝜎𝜎 �𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘) + ∑  𝑢𝑢𝑢𝑢∈𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
1

�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢||𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖|
�𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘) + 𝐖𝐖𝐖𝐖2�𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘) ⊙𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘)���
 (1)

The propagation of embedding is carried out through neural network operations such as
feature transformation and nonlinear activation function, which is different from traditional
methods. Compared with the method, NGCF has achieved great success, but for the
recommended data, The ID does not contain more features, It shows a one-hot code, which
has no special meaning, but the information of each node on the image contains very rich
information,So the characteristic transformation and nonlinear activation function in GCN
may not work. After simplified, LGC dissemination method is:

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘+1) = �  

𝑖𝑖𝑖𝑖∈𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢

1
�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢|�|𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖|

𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘)

𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘+1) = �  

𝑢𝑢𝑢𝑢∈𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖

1
�|𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖|�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢|

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘)

 (2)

The feature transformation and nonlinear activation function are directly discarded.
Embedded communication becomes more concise and easier to train.

After a rigorous ablation experiment, Light-GCN shows that the training speed and
training accuracy of the Light-GCN model are both better than NGCF.

After K rounds of propagation, a total of K+1 embedding representations are obtained. If
the last embedding is directly used as the finally embedding, the information embedded
before the tune will be lost, so the combination of embedding will be introduced in the next
section.

2

E3S Web of Conferences 268, 01061 (2021) https://doi.org/10.1051/e3sconf/202126801061
VESEP2020

Section 3 gives the experimental steps And the results. finally, the finally part summarizes
the full paper.

2 Methodologies

2.1 Data aggregation

When we built the recommendation dataset, we found that the data is extremely sparse, which
will affect The performance of embedding, and sparseness will also affect the recommended
performance. We use data aggregation to solve such problem, More specifically, We extract
the features of open source projects from README and label, and then compare the
similarities of these features,When the similarity between them is close to a certain threshold,
the two projects will be merged into one project. This alleviates the extremely sparse nature
of the data.

2.2 Embedding

Various methods of graph embedding have been proposed in the machine learning literature
[13,14,15].

The NGCF and DGCF are all inherited from GCN, The basic idea of GCN is to learning
representation for nodes by smoothing features over the graph [7,8], NGCF contains the
characteristics of GCN For operations such as transformation and nonlinear activation
functions, the propagation rules of NGCF are define as:

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘+1) = 𝜎𝜎𝜎𝜎 �𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘) + ∑  𝑖𝑖𝑖𝑖∈𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢
1

�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢∥ℕ𝑖𝑖𝑖𝑖|
�𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘) + 𝐖𝐖𝐖𝐖2�𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘) ⊙ 𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘)���

𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘+1) = 𝜎𝜎𝜎𝜎 �𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘) + ∑  𝑢𝑢𝑢𝑢∈𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
1

�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢||𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖|
�𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘) + 𝐖𝐖𝐖𝐖2�𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘) ⊙𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘)���
 (1)

The propagation of embedding is carried out through neural network operations such as
feature transformation and nonlinear activation function, which is different from traditional
methods. Compared with the method, NGCF has achieved great success, but for the
recommended data, The ID does not contain more features, It shows a one-hot code, which
has no special meaning, but the information of each node on the image contains very rich
information,So the characteristic transformation and nonlinear activation function in GCN
may not work. After simplified, LGC dissemination method is:

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘+1) = �  

𝑖𝑖𝑖𝑖∈𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢

1
�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢|�|𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖|

𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘)

𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘+1) = �  

𝑢𝑢𝑢𝑢∈𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖

1
�|𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖|�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢|

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘)

 (2)

The feature transformation and nonlinear activation function are directly discarded.
Embedded communication becomes more concise and easier to train.

After a rigorous ablation experiment, Light-GCN shows that the training speed and
training accuracy of the Light-GCN model are both better than NGCF.

After K rounds of propagation, a total of K+1 embedding representations are obtained. If
the last embedding is directly used as the finally embedding, the information embedded
before the tune will be lost, so the combination of embedding will be introduced in the next
section.

Fig. 1. Model overview.

2.3 Embeddings combibation and prediction

After K propagations of Light-GCN, a total of K+1 embeddings are obtained, and the final
embedding is obtained by multiple parties. The problem comes that how shoule we
combination this emneddings? One method is to directly take the last embedding step to make
the most final embedding, but as the number of layers increases, The embedding is too
smooth, and the semantics of different embedding layers are different, so the last layer is
directly embedded As the final embedding, it directly affects the performance of embedding.
Another way is to give each layer of embedding a weighted. For Light-GCN, in each layer
of embedding The weights are 1/(K+1), we believe that the propagated embedding should be
better than the previous embedding,Therefore, the later embeddings should be given higher
weights. Unlike Light-GCN, in our model, The final embedding of our users and projects is
defined as:

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢 = ∑  𝐾𝐾𝐾𝐾
𝑘𝑘𝑘𝑘=0 𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘);𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖 = ∑  𝐾𝐾𝐾𝐾
𝑘𝑘𝑘𝑘=0 𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘) (3)
𝛼𝛼𝛼𝛼 = {1 + (𝑘𝑘𝑘𝑘/ℎ)}/(𝐾𝐾𝐾𝐾 + 1) , in this way, the later embeddings are given higher

hyperparameters, where h is one of the models A hyperparameter that can be trained
represents the weight of the embedding layer.

Finally, the prediction score is calculated by the inner product of the user's items:
 𝑦𝑦𝑦𝑦�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 = 𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢𝑇𝑇𝑇𝑇𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖 (4)

2.4 Training

For our model, after giving the embedding of the 0th layer, the rest can be directly
calculated,So the parameters that can be trained are the parameters of the 0th layer, and the
parameter h of the embedding combination can be adjusted manually Hyperparameters, the
loss function uses BPR loss:

 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = −∑  𝑀𝑀𝑀𝑀
𝑢𝑢𝑢𝑢=1 ∑  𝑖𝑖𝑖𝑖∈𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢 ∑  𝑗𝑗𝑗𝑗∉𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢 ln𝜎𝜎𝜎𝜎�𝑦𝑦𝑦𝑦�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗� + 𝜆𝜆𝜆𝜆∥∥𝐄𝐄𝐄𝐄(0)∥∥

2 (5)

3 Experriments
In order to verify the execution efficiency of the model proposed in this paper, we trained it
on the ubuntu 20. 04. 1 operating system Tesla V100 32G graphics card accelerates training,
using recall, mrr, and ndcg hit precision indicators to measure the performance of our model.

3.1 Dateset

Our original data comes from the API interface of user behavior logs open on github. The
first problem we face is how to store T-level behavioral data. For github logs, we need update
it frequently , and traditional relational database may face frequent disk I/O. The distributed

3

E3S Web of Conferences 268, 01061 (2021) https://doi.org/10.1051/e3sconf/202126801061
VESEP2020

open-source database clickhouse supports high-speed data compression, multi-core parallel
processing and other features, which can solve the problems above. so we chooses clickhouse
to store log data.

Table 1. Performance of different models

Model recall mrr ndcg hit precision
BPR 0. 5673 0. 6349 0. 5563 0. 7183 0. 1384

NGCF 0. 3979 0. 4388 0. 3695 0. 5582 0. 0971
DGCF 0. 5681 0. 5979 0. 5372 0. 7232 0. 1414
LINE 0. 522 0. 5922 0. 5078 0. 6843 0. 1162

MultiDAE 0. 578 0. 7124 0. 6131 0. 7217 0. 1466
LIGHT-GCN 0. 5659 0. 5593 0. 5096 0. 7203 0. 1430

our-model 0. 5725 0. 6238 0. 5207 0. 7211 0. 1433

The original data records the user's issue, pr, merge and other operations. This provides
us with a basis for scoring ,Therefore, specifically, IssueCommentEvent is counted as 1 point,
IssuesEvent is counted as 2 points, fork Scored as 3 points, PullRequestEvent but not merge
scored as 4 points, PullRequestReviewCommentEvent is scored as 5 points, and
PullRequestEvent is The merge is recorded as 6 points. Therefore, the data are equally
divided into "1-6". For multiple operations of a user, Determine the final score by averaging.
This data and filter all the data for the first half of 2020,At the sametime, in order to ensure
the reliability of the data, the user data with less than 15 operation records is eliminated. We
have carried out a series of data preprocessing, and the specific flow chart is as figure 2.

Finally, after filtering and conversion, we got a dataset with 914,871 users and 4,619,089
projects with a total of 12,871,935 interactive, the Table 2 is the detailed information of the
data set.

Table 2. Indicators of dataset.

users 914871
items 4619089

Average actions of items 2. 786683215387973
The number of inters 12871935

The sparsity of the dataset 99. 99969540157988%

Fig. 2. Data cleaning process.

3.2 Result

The experimental results are shown in the Table 1. This article is based on the light-GCN
model to make it more suitable For our experiment, we performed an aggregation operation
on interaction-based data to alleviate the problem of extremely sparse data.

4

E3S Web of Conferences 268, 01061 (2021) https://doi.org/10.1051/e3sconf/202126801061
VESEP2020

open-source database clickhouse supports high-speed data compression, multi-core parallel
processing and other features, which can solve the problems above. so we chooses clickhouse
to store log data.

Table 1. Performance of different models

Model recall mrr ndcg hit precision
BPR 0. 5673 0. 6349 0. 5563 0. 7183 0. 1384

NGCF 0. 3979 0. 4388 0. 3695 0. 5582 0. 0971
DGCF 0. 5681 0. 5979 0. 5372 0. 7232 0. 1414
LINE 0. 522 0. 5922 0. 5078 0. 6843 0. 1162

MultiDAE 0. 578 0. 7124 0. 6131 0. 7217 0. 1466
LIGHT-GCN 0. 5659 0. 5593 0. 5096 0. 7203 0. 1430

our-model 0. 5725 0. 6238 0. 5207 0. 7211 0. 1433

The original data records the user's issue, pr, merge and other operations. This provides
us with a basis for scoring ,Therefore, specifically, IssueCommentEvent is counted as 1 point,
IssuesEvent is counted as 2 points, fork Scored as 3 points, PullRequestEvent but not merge
scored as 4 points, PullRequestReviewCommentEvent is scored as 5 points, and
PullRequestEvent is The merge is recorded as 6 points. Therefore, the data are equally
divided into "1-6". For multiple operations of a user, Determine the final score by averaging.
This data and filter all the data for the first half of 2020,At the sametime, in order to ensure
the reliability of the data, the user data with less than 15 operation records is eliminated. We
have carried out a series of data preprocessing, and the specific flow chart is as figure 2.

Finally, after filtering and conversion, we got a dataset with 914,871 users and 4,619,089
projects with a total of 12,871,935 interactive, the Table 2 is the detailed information of the
data set.

Table 2. Indicators of dataset.

users 914871
items 4619089

Average actions of items 2. 786683215387973
The number of inters 12871935

The sparsity of the dataset 99. 99969540157988%

Fig. 2. Data cleaning process.

3.2 Result

The experimental results are shown in the Table 1. This article is based on the light-GCN
model to make it more suitable For our experiment, we performed an aggregation operation
on interaction-based data to alleviate the problem of extremely sparse data.

3.2.1 Compare model

In the integration based on the data set we built, we ran our data on the following models:
• BPR: A classic Bayesian personalized ranking based on implicit feedback.
• NGCF: An advanced model that uses neural networks to build user and project

embeddings.
• DGCF: In the process of modeling, pay more attention to the user-project relationship

of user intent.
• LINE: LINE’s main research is to embed super-large information networks into bottom-

dimensional vectors. We think this is consistent with our embedding process, so we also build
a recommendation model based on this type. [5]

• MultiDAE: A collaboration that extends Variational Autoencoder (VAE) to be used for
implicit feedback Filter method. [6]

• LIGHT-GCN: The basic method of embedding used in this article.

3.2.2 Compare result

Light-GCN is a variant model based on NGCF, and our model is based on the modification
of Light-GCN,Therefore, this article focuses on comparing the relationship between the three,
and the results obtained by other models are only for reference. As can be seen from the table,
Light-GCN has made relatively high progress in various indicators compared to NGCF.

This has been demonstrated in the author’s article, and compared to Light-GCn, our
model,The verification results are better than the previous model, @recall increased by 0.
0066, @mrr increased Increased by 0. 0645, @ndcg increased by 0. 0111, @hit increased by
0. 008, @precision increased 0. 0003. More specific information is in Table 1.

4 Conclusion
This paper implements a recommendation model based on the improvement of Light-GCN
and applies the model to the github item, In the purpose of recommendation, it shows good
performance and can be applied to actual scenarios. At the same time, we built a large dataset
based on user behavior log data of open source projects. In future research, we Talk about
further improving our model to make it show better performance.

References
1. Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang.

2020. LightGCN: Simplifying and Powering Graph Convolution Network for
Recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’20), July 25–30, 2020,
Virtual Event, China. ACM, New York, NY, USA,10 pages. https://doi. org/10.
1145/3397271. 3401063

2. Steffen Rendle,et al,BPR: Bayesian personalized ranking from implicit
feedback,Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial
Intelligence,2009,452-461.

3. Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural
Graph Collaborative Filtering. InProceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR ’19), July
21–25, 2019, Paris, France. ACM, New York, NY, USA, 10 pages. https://doi. org/10.
1145/3331184. 3331267

5

E3S Web of Conferences 268, 01061 (2021) https://doi.org/10.1051/e3sconf/202126801061
VESEP2020

4. Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua. 2020.
Disentangled Graph Collaborative Filtering. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’20), July 25–30, 2020, Virtual Event, China. ACM,New York, NY, USA, 10
pages. https://doi. org/10. 1145/3397271. 3401137 [5]Jian Tang. LINE: Large-scale
Information Network Embedding,Proceedings of the 24th International Conference on
World Wide Web,2015,1067-1077 DOI:https://doi. org/10. 1145/2736277.
2741093Conference Name:ACM Woodstock conferenceConference Short
Name:WOODSTOCK’18

5. Jian Tang. LINE: Large-scale Information Network Embedding,Proceedings of the 24th
International Conference on World Wide Web,2015,1067-1077 DOI:https://doi. org/10.
1145/2736277. 2741093

6. Dawen Liang,Variational Autoencoders for Collaborative Filtering,Proceedings of the
2018 World Wide Web Conference,2018,689-698. DOI:https://doi. org/10.
1145/3178876. 3186150Conference Name:ACM Woodstock conferenceConference
Short Name:WOODSTOCK’18

7. Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph
Convolutional Networks. In ICLR. Conference Location:El Paso, Texas USA

8. Felix Wu, Amauri H. Souza Jr. , Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. 2019. Simplifying Graph Convolutional Networks. In ICML. 6861–6871.

9. Travis Ebesu, Bin Shen, and Yi Fang. 2018. Collaborative Memory Network for
Recommendation Systems. In SIGIR. 515–524

10. Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua.
2017. Neural Collaborative Filtering. In WWW. 173–182. .

11. Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara. 2018.
Variational Autoencoders for Collaborative Filtering. In WWW. 689–698.

12. Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019. Neural
Graph Collaborative Filtering. In SIGIR. 165–174.

13. T. F. Cox and M. A. Cox. Multidimensional scaling. CRC Press, 2000.
14. J. B. Tenenbaum, V. De Silva, and J. C. Langford. Aglobal geometric framework for

nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000.
15. M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding

and clustering. In NIPS, volume 14, pages 585–591, 2001.

6

E3S Web of Conferences 268, 01061 (2021) https://doi.org/10.1051/e3sconf/202126801061
VESEP2020

