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Abstract. Open-source has become a very important topic in this era. the 
number of open-source projects on github Shows a huge growth trend. 
Facing so many open-source projects, it’s not easy to find the projects and 
topics that the developers interested in. so, it is necessary to model the user's 
behavior data,So as to automatically recommend projects to developers. to 
explore this problem, we constructed a dataset of 90w users and 461w 
projects based on github log and did a lot of cleaning work on the data. 
finally, we model the data through the improvement of the Light-GCN 
model to recommend relevant open-source projects to users. The 
experimental results show that the accuracy of our model is more than 15%.  

1 Introduction 
As the world’s largest code hosting platform, the data shows that in the past 2020, there 

were 56 million developers establisged over 60 million projects, these projects cover many 
areas of our real life. Facing so Many projects and communities, it is hard for developers to 
choose the project among tens of millions of open source projects which they are instrested 
in, so it is necessary to build a  recommendation system based on github log data.  

In recent years, recommendation algorithms have achieved good applications in both 
academia and industry, such as The early BPR[2] matrix factorization method, recently, some 
researchers have applied GCN to the recommendation system, such as DGCF[4] and 
NGCF[3], light-GCN[1] eliminates redundant nonlinear transformations and feature changes 
in NGCF,It makes the model more concise and easy to train.  

collaborative filtering(CF), which focuses on exploiting the past user-item interactions to 
achieve the prediction, remains to be a fundamental task towards effective personalized 
recommendation [9,10,11,12],However, few people apply the recommendation model to 
open -source Project recommendation.  

We proposes a GCN-based open-source project recommendation model, which builds 
based on user behavior data. In addition, this model has better recall while ensuring training 
speed.  

The model has been applied to github behavior log data and achieved good results. The 
other parts of this article are organized as follows: Section 2 introduces the model , and 
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Section 3 gives the experimental steps And the results. finally, the finally part summarizes 
the full paper.  

2 Methodologies 

2.1 Data aggregation 

When we built the recommendation dataset, we found that the data is extremely sparse, which 
will affect The performance of embedding, and sparseness will also affect the recommended 
performance. We use data aggregation to solve such problem, More specifically, We extract 
the features of open source projects from README and label, and then compare the 
similarities of these features,When the similarity between them is close to a certain threshold, 
the two projects will be merged into one project. This alleviates the extremely sparse nature 
of the data.  

2.2 Embedding 

Various methods of graph embedding have been proposed in the machine learning literature 
[13,14,15].  

The NGCF and DGCF are all inherited from GCN, The basic idea of GCN is to learning 
representation for nodes by smoothing features over the graph [7,8], NGCF contains the 
characteristics of GCN For operations such as transformation and nonlinear activation 
functions, the propagation rules of NGCF are define as: 

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘+1) = 𝜎𝜎𝜎𝜎 �𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘) + ∑  𝑖𝑖𝑖𝑖∈𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢
1

�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢∥ℕ𝑖𝑖𝑖𝑖|
�𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘) + 𝐖𝐖𝐖𝐖2�𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘) ⊙ 𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘)���

𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘+1) = 𝜎𝜎𝜎𝜎 �𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘) + ∑  𝑢𝑢𝑢𝑢∈𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖
1

�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢||𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖|
�𝐖𝐖𝐖𝐖1𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘) + 𝐖𝐖𝐖𝐖2�𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘) ⊙𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘)���
        (1) 

The propagation of embedding is carried out through neural network operations such as 
feature transformation and nonlinear activation function, which is different from traditional 
methods. Compared with the method, NGCF has achieved great success, but for the 
recommended data, The ID does not contain more features, It shows a one-hot code, which 
has no special meaning, but the information of each node on the image contains very rich 
information,So the characteristic transformation and nonlinear activation function in GCN 
may not work. After  simplified, LGC dissemination method is: 

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘+1) = �  

𝑖𝑖𝑖𝑖∈𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢

1
�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢|�|𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖|

𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘)

𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖
(𝑘𝑘𝑘𝑘+1) = �  

𝑢𝑢𝑢𝑢∈𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖

1
�|𝒩𝒩𝒩𝒩𝑖𝑖𝑖𝑖|�|𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢|

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢
(𝑘𝑘𝑘𝑘)

  (2) 

The feature transformation and nonlinear activation function are directly discarded. 
Embedded communication becomes more concise and easier to train.  

After a rigorous ablation experiment, Light-GCN shows that the training speed and 
training accuracy of the Light-GCN model are both better than NGCF.  

After K rounds of propagation, a total of K+1 embedding representations are obtained. If 
the last embedding is directly used as the finally embedding, the information embedded 
before the tune will be lost, so the combination of embedding will be introduced in the next 
section.  
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Fig. 1. Model overview. 

2.3 Embeddings combibation and prediction 

After K propagations of Light-GCN, a total of  K+1 embeddings are obtained, and the final 
embedding is obtained by multiple parties. The problem comes that how shoule we 
combination this emneddings? One method is to directly take the last embedding step to make 
the most final embedding, but as the number of layers increases, The embedding is too 
smooth, and the semantics of different embedding layers are different, so the last layer is 
directly embedded As the final embedding, it directly affects the performance of embedding.  
Another way is to give each layer of embedding a weighted. For Light-GCN, in each layer 
of embedding The weights are 1/(K+1), we believe that the propagated embedding should be 
better than the previous embedding,Therefore, the later embeddings should be given higher 
weights. Unlike Light-GCN, in our model, The final embedding of our users and projects is 
defined as: 

𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢 = ∑  𝐾𝐾𝐾𝐾
𝑘𝑘𝑘𝑘=0 𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢

(𝑘𝑘𝑘𝑘);𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖 = ∑  𝐾𝐾𝐾𝐾
𝑘𝑘𝑘𝑘=0 𝛼𝛼𝛼𝛼𝑘𝑘𝑘𝑘𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖

(𝑘𝑘𝑘𝑘) (3)  
𝛼𝛼𝛼𝛼 = {1 + (𝑘𝑘𝑘𝑘/ℎ)}/(𝐾𝐾𝐾𝐾 + 1) , in this way, the later embeddings are given higher 

hyperparameters, where h is one of the models A hyperparameter that can be trained 
represents the weight of the embedding layer.  

Finally, the prediction score is calculated by the inner product of the user's items: 
          𝑦𝑦𝑦𝑦�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 = 𝐞𝐞𝐞𝐞𝑢𝑢𝑢𝑢𝑇𝑇𝑇𝑇𝐞𝐞𝐞𝐞𝑖𝑖𝑖𝑖 (4)  

2.4 Training 

For our model, after giving the embedding of the 0th layer, the rest can be directly 
calculated,So the parameters that can be trained are the parameters of the 0th layer, and the 
parameter h of the embedding combination can be adjusted manually Hyperparameters, the 
loss function uses BPR loss: 

 𝐿𝐿𝐿𝐿𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = −∑  𝑀𝑀𝑀𝑀
𝑢𝑢𝑢𝑢=1 ∑  𝑖𝑖𝑖𝑖∈𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢 ∑  𝑗𝑗𝑗𝑗∉𝒩𝒩𝒩𝒩𝑢𝑢𝑢𝑢 ln𝜎𝜎𝜎𝜎�𝑦𝑦𝑦𝑦�𝑢𝑢𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑢𝑢𝑢𝑢𝑗𝑗𝑗𝑗� + 𝜆𝜆𝜆𝜆∥∥𝐄𝐄𝐄𝐄(0)∥∥

2 (5) 

3 Experriments 
In order to verify the execution efficiency of the model proposed in this paper, we trained it 
on the ubuntu 20. 04. 1 operating system Tesla V100 32G graphics card accelerates training, 
using recall, mrr, and ndcg hit precision indicators to measure the performance of our model.  

3.1 Dateset 

Our original data comes from the API interface of user behavior logs open on github. The 
first problem we face is how to store T-level behavioral data. For github logs, we need update 
it frequently , and traditional relational database may face frequent disk I/O. The distributed 
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open-source database clickhouse supports high-speed data compression, multi-core parallel 
processing and other features, which can solve the problems above. so we chooses clickhouse 
to store log data.  

Table 1. Performance of different models 

Model recall mrr ndcg hit precision 
BPR 0. 5673 0. 6349 0. 5563 0. 7183 0. 1384 

NGCF 0. 3979 0. 4388 0. 3695 0. 5582 0. 0971 
DGCF 0. 5681 0. 5979 0. 5372 0. 7232 0. 1414 
LINE 0. 522 0. 5922 0. 5078 0. 6843 0. 1162 

MultiDAE 0. 578 0. 7124 0. 6131 0. 7217 0. 1466 
LIGHT-GCN 0. 5659 0. 5593 0. 5096 0. 7203 0. 1430 

our-model 0. 5725 0. 6238 0. 5207 0. 7211 0. 1433 
 

The original data records the user's issue, pr, merge and other operations. This provides 
us with a basis for scoring ,Therefore, specifically, IssueCommentEvent is counted as 1 point, 
IssuesEvent is counted as 2 points, fork Scored as 3 points, PullRequestEvent but not merge 
scored as 4 points, PullRequestReviewCommentEvent is scored as 5 points, and 
PullRequestEvent is The merge is recorded as 6 points. Therefore, the data are equally 
divided into "1-6". For multiple operations of a user, Determine the final score by averaging. 
This data and filter all the data for the first half of 2020,At the sametime, in order to ensure 
the reliability of the data, the user data with less than 15 operation records is eliminated. We 
have carried out a series of data preprocessing, and the specific flow chart is as figure 2.  

Finally, after filtering and conversion, we got a dataset with 914,871 users and 4,619,089 
projects with a total of 12,871,935 interactive, the Table 2 is the detailed information of the 
data set.  

Table 2. Indicators of dataset. 

users 914871 
items 4619089 

Average actions of items 2. 786683215387973 
The number of inters 12871935 

The sparsity of the dataset 99. 99969540157988% 
 

 

Fig. 2. Data cleaning process. 

3.2 Result 

The experimental results are shown in the Table 1. This article is based on the light-GCN 
model to make it more suitable For our experiment, we performed an aggregation operation 
on interaction-based data to alleviate the problem of extremely sparse data.  
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3.2.1 Compare model 

In the integration based on the data set we built, we ran our data on the following models: 
• BPR: A classic Bayesian personalized ranking based on implicit feedback.  
• NGCF: An advanced model that uses neural networks to build user and project 

embeddings.  
• DGCF: In the process of modeling, pay more attention to the user-project relationship 

of user intent.  
• LINE: LINE’s main research is to embed super-large information networks into bottom-

dimensional vectors. We think this is consistent with our embedding process, so we also build 
a recommendation model based on this type. [5] 

• MultiDAE: A collaboration that extends Variational Autoencoder (VAE) to be used for 
implicit feedback Filter method. [6] 

• LIGHT-GCN: The basic method of embedding used in this article.  

3.2.2 Compare result 

Light-GCN is a variant model based on NGCF, and our model is based on the modification 
of Light-GCN,Therefore, this article focuses on comparing the relationship between the three, 
and the results obtained by other models are only for reference. As can be seen from the table, 
Light-GCN has made relatively high progress in various indicators compared to NGCF.  

This has been demonstrated in the author’s article, and compared to Light-GCn, our 
model,The verification results are better than the previous model, @recall increased by 0. 
0066, @mrr increased Increased by 0. 0645, @ndcg increased by 0. 0111, @hit increased by 
0. 008, @precision increased 0. 0003. More specific information is in Table 1.  

4 Conclusion 
This paper implements a recommendation model based on the improvement of Light-GCN 
and applies the model to the github item, In the purpose of recommendation, it shows good 
performance and can be applied to actual scenarios. At the same time, we built a large dataset 
based on user behavior log data of open source projects. In future research, we Talk about 
further improving our model to make it show better performance.  
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