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Abstract. This paper uses a new multiplication of fractional functions and 
chain rule for fractional derivatives, regarding the Jumarie type of 
modified Riemann-Liouville fractional derivatives to obtain the general 
solutions of four types of first order fractional differential equations. On 
the other hand, some examples are proposed to illustrate our results. 

1 Introduction 
Fractional calculus is the field of mathematical analysis which deals with the 

investigation and applications of integrals and derivatives of arbitrary order. The fractional 
calculus, during the last years went through a great evolution [1-3]. The reason for the 
advancement and expansion is due to the great number of functions that fractional 
differentiation operators and integration provided to the academic community [4-7]. The 
fractional calculus may be considered an old and yet novel topic. It is an old topic since, 
starting from some speculations of Leibniz and Euler, it has been developed up to 
nowadays. A list of mathematicians, who have provided important contributions up to the 
middle of our century, includes Laplace, Fourier, Abel, Liouville, Riemann, Holmgren, 
Grünwald, Letnikov, Laurent, Nekrassov, Krug, Hadamard, Heaviside, Pincherle, Hardy 
and Littlewood, Weyl, L´evy, Marchaud, Davis, Zygmund, Love, Erd´elyi, Kober, Widder, 
Riesz.  

In recent years, fractional calculus has been a fruitful field of research in science and 
engineering [7-10]. In fact, many scientific areas are currently paying attention to the 
fractional calculus concepts and we can refer its adoption in viscoelasticity and damping, 
diffusion and wave propagation, electromagnetism, chaos and fractals, heat transfer, 
electronics, signal processing, robotics, system identification, traffic systems, genetic 
algorithms, percolation, modelling and identification, telecommunications, physics, control 
systems, economy and finance. Unlike standard calculus, there is no unique definition of 
derivation and integration in fractional calculus. The commonly used definition is the 
Riemann-Liouville (R-L) fractional derivative [9]. Other useful definitions include Caputo 
definition of fractional derivative [11], the Grunwald-Letinikov (G-L) fractional derivative 
[9], and Jumarie’s modified R-L fractional derivative [12].  
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In this article, we study four types of first order fractional differential equations, 
regarding the Jumarie type of modified R-L fractional derivatives. A new multiplication of 
fractional functions is defined and we use chain rule for fractional derivatives to obtain the 
general solutions of these first order fractional differential equations. Moreover, some 
examples are given to demonstrate the advantage of our results. 

2 Preliminaries and methods 
Firstly, the fractional calculus used in this paper is introduced below. 

Definition 2.1: Let 𝛼𝛼 be a real number and 𝑚𝑚 be a positive integer. The modified 
Riemann-Liouville fractional derivatives of Jumarie type ([13]) is defined by  

𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼[𝑓𝑓(𝑥𝑥)] =

⎩⎪
⎨
⎪⎧

1
Γ(−𝛼𝛼) ∫ (𝑥𝑥 − 𝜏𝜏)−𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝑑𝑑,                      if  𝛼𝛼 < 0𝑥𝑥

𝑎𝑎
1

Γ(1−𝛼𝛼)
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ (𝑥𝑥 − 𝜏𝜏)−𝛼𝛼[𝑓𝑓(𝜏𝜏) − 𝑓𝑓(𝑎𝑎)]𝑥𝑥

𝑎𝑎 𝑑𝑑𝑑𝑑      if  0 ≤ 𝛼𝛼 < 1  
𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑𝑚𝑚 � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼−𝑚𝑚�[𝑓𝑓(𝑥𝑥)],                     if  𝑚𝑚 ≤ 𝛼𝛼 < 𝑚𝑚 + 1

�     (1) 

where Γ(𝑦𝑦) = ∫ 𝑡𝑡𝑦𝑦−1𝑒𝑒−𝑡𝑡∞
0 dt  is the gamma function defined on 𝑦𝑦 > 0 . If 

� 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�
𝑛𝑛[𝑓𝑓(𝑥𝑥)] = � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�� 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼� ∙∙∙ � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�[𝑓𝑓(𝑥𝑥)] exists, then 𝑓𝑓(𝑥𝑥)  is called 𝑛𝑛-th order 

𝛼𝛼 -fractional differentiable function, and � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�
𝑛𝑛[𝑓𝑓(𝑥𝑥)] is the  𝑛𝑛 -th order 𝛼𝛼 -fractional 

derivative of 𝑓𝑓(𝑥𝑥). We note that � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�
𝑛𝑛 ≠ 𝐷𝐷𝑎𝑎 𝑥𝑥𝑛𝑛𝑛𝑛 in general. On the other hand, we 

define the fractional integral of 𝑓𝑓(𝑥𝑥), 𝐼𝐼𝑎𝑎 𝑥𝑥𝛼𝛼[𝑓𝑓(𝑥𝑥)] = 𝐷𝐷𝑎𝑎 𝑥𝑥−𝛼𝛼[𝑓𝑓(𝑥𝑥)], where 𝛼𝛼 > 0, and 𝑓𝑓(𝑥𝑥) 
is called α-integral function. We have the following property [14].  

Proposition 2.2: Let 𝛼𝛼, 𝛽𝛽, 𝑐𝑐 be real numbers and 𝛽𝛽 ≥ 𝛼𝛼 > 0, then 
𝐷𝐷0 𝑥𝑥𝛼𝛼�𝑥𝑥𝛽𝛽� = Γ(𝛽𝛽+1)

Γ(𝛽𝛽−𝛼𝛼+1) 𝑥𝑥
𝛽𝛽−𝛼𝛼,                             (2) 

and 
                 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑐𝑐] = 0.                                  (3) 

Next, we introduce the fractional exponential function. 
Definition 2.3 ([15]): The Mittag-Leffler function is defined by 

𝐸𝐸𝛼𝛼(𝑧𝑧) = ∑ 𝑧𝑧𝑘𝑘
Γ(𝑘𝑘𝑘𝑘+1)

∞
𝑘𝑘=0 ,                              (4) 

where  𝛼𝛼  is a real number, α > 0, and 𝑧𝑧 is a complex variable. 
In the following, we introduce a new multiplication of fractional functions. 
Definition 2.4 ([16]): Let 𝜆𝜆, 𝜇𝜇, 𝑧𝑧  be complex numbers, 0 < 𝛼𝛼 ≤ 1 ,  𝑗𝑗, 𝑙𝑙, 𝑘𝑘  be 

non-negative integers, and 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘 be real numbers, 𝑝𝑝𝑘𝑘(𝑧𝑧) = 1
Γ(𝑘𝑘𝑘𝑘+1) 𝑧𝑧

𝑘𝑘 for all 𝑘𝑘. The ⊗ 
multiplication is defined by 

𝑝𝑝𝑗𝑗(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ 𝑝𝑝𝑙𝑙(𝜇𝜇𝜇𝜇𝛼𝛼) = 1
Γ(𝑗𝑗𝑗𝑗+1) (𝜆𝜆𝑥𝑥𝛼𝛼)𝑗𝑗 ⊗ 1

Γ(𝑙𝑙𝑙𝑙+1) (𝜇𝜇𝜇𝜇𝛼𝛼)𝑙𝑙 = 
1

Γ((𝑗𝑗+𝑙𝑙)𝛼𝛼+1) �
𝑗𝑗 + 𝑙𝑙
𝑗𝑗 � (𝜆𝜆𝑥𝑥𝛼𝛼)𝑗𝑗(𝜇𝜇𝜇𝜇𝛼𝛼)𝑙𝑙, (5) 

where �𝑗𝑗 + 𝑙𝑙
𝑗𝑗 � = (𝑗𝑗+𝑙𝑙)!

𝑗𝑗!𝑙𝑙! . 

If 𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) and  𝑔𝑔𝛼𝛼(𝜇𝜇𝜇𝜇𝛼𝛼) are two fractional functions, 
                𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜆𝜆𝑥𝑥𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘
Γ(𝑘𝑘𝑘𝑘+1) (𝜆𝜆𝑥𝑥𝛼𝛼)𝑘𝑘∞

𝑘𝑘=0 ,             (6) 

 𝑔𝑔𝛼𝛼(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘

Γ(𝑘𝑘𝑘𝑘+1) (𝜇𝜇𝜇𝜇𝛼𝛼)𝑘𝑘∞
𝑘𝑘=0 ,             (7) 

then we define  
  𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ 𝑔𝑔𝛼𝛼(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ ∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼)  

                      = ∑ (∑ 𝑎𝑎𝑘𝑘−𝑚𝑚𝑏𝑏𝑚𝑚𝑝𝑝𝑘𝑘−𝑚𝑚(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ 𝑝𝑝𝑚𝑚(𝜇𝜇𝑦𝑦𝛼𝛼)𝑘𝑘
𝑚𝑚=0 )∞

𝑘𝑘=0  .         (8) 
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In this article, we study four types of first order fractional differential equations, 
regarding the Jumarie type of modified R-L fractional derivatives. A new multiplication of 
fractional functions is defined and we use chain rule for fractional derivatives to obtain the 
general solutions of these first order fractional differential equations. Moreover, some 
examples are given to demonstrate the advantage of our results. 

2 Preliminaries and methods 
Firstly, the fractional calculus used in this paper is introduced below. 

Definition 2.1: Let 𝛼𝛼 be a real number and 𝑚𝑚 be a positive integer. The modified 
Riemann-Liouville fractional derivatives of Jumarie type ([13]) is defined by  

𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼[𝑓𝑓(𝑥𝑥)] =

⎩⎪
⎨
⎪⎧

1
Γ(−𝛼𝛼) ∫ (𝑥𝑥 − 𝜏𝜏)−𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝑑𝑑,                      if  𝛼𝛼 < 0𝑥𝑥

𝑎𝑎
1

Γ(1−𝛼𝛼)
𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ (𝑥𝑥 − 𝜏𝜏)−𝛼𝛼[𝑓𝑓(𝜏𝜏) − 𝑓𝑓(𝑎𝑎)]𝑥𝑥

𝑎𝑎 𝑑𝑑𝑑𝑑      if  0 ≤ 𝛼𝛼 < 1  
𝑑𝑑𝑚𝑚
𝑑𝑑𝑑𝑑𝑚𝑚 � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼−𝑚𝑚�[𝑓𝑓(𝑥𝑥)],                     if  𝑚𝑚 ≤ 𝛼𝛼 < 𝑚𝑚 + 1

�     (1) 

where Γ(𝑦𝑦) = ∫ 𝑡𝑡𝑦𝑦−1𝑒𝑒−𝑡𝑡∞
0 dt  is the gamma function defined on 𝑦𝑦 > 0 . If 

� 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�
𝑛𝑛[𝑓𝑓(𝑥𝑥)] = � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�� 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼� ∙∙∙ � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�[𝑓𝑓(𝑥𝑥)] exists, then 𝑓𝑓(𝑥𝑥)  is called 𝑛𝑛-th order 

𝛼𝛼 -fractional differentiable function, and � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�
𝑛𝑛[𝑓𝑓(𝑥𝑥)] is the  𝑛𝑛 -th order 𝛼𝛼 -fractional 

derivative of 𝑓𝑓(𝑥𝑥). We note that � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�
𝑛𝑛 ≠ 𝐷𝐷𝑎𝑎 𝑥𝑥𝑛𝑛𝑛𝑛 in general. On the other hand, we 

define the fractional integral of 𝑓𝑓(𝑥𝑥), 𝐼𝐼𝑎𝑎 𝑥𝑥𝛼𝛼[𝑓𝑓(𝑥𝑥)] = 𝐷𝐷𝑎𝑎 𝑥𝑥−𝛼𝛼[𝑓𝑓(𝑥𝑥)], where 𝛼𝛼 > 0, and 𝑓𝑓(𝑥𝑥) 
is called α-integral function. We have the following property [14].  

Proposition 2.2: Let 𝛼𝛼, 𝛽𝛽, 𝑐𝑐 be real numbers and 𝛽𝛽 ≥ 𝛼𝛼 > 0, then 
𝐷𝐷0 𝑥𝑥𝛼𝛼�𝑥𝑥𝛽𝛽� = Γ(𝛽𝛽+1)

Γ(𝛽𝛽−𝛼𝛼+1) 𝑥𝑥
𝛽𝛽−𝛼𝛼,                             (2) 

and 
                 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑐𝑐] = 0.                                  (3) 

Next, we introduce the fractional exponential function. 
Definition 2.3 ([15]): The Mittag-Leffler function is defined by 

𝐸𝐸𝛼𝛼(𝑧𝑧) = ∑ 𝑧𝑧𝑘𝑘
Γ(𝑘𝑘𝑘𝑘+1)

∞
𝑘𝑘=0 ,                              (4) 

where  𝛼𝛼  is a real number, α > 0, and 𝑧𝑧 is a complex variable. 
In the following, we introduce a new multiplication of fractional functions. 
Definition 2.4 ([16]): Let 𝜆𝜆, 𝜇𝜇, 𝑧𝑧  be complex numbers, 0 < 𝛼𝛼 ≤ 1 ,  𝑗𝑗, 𝑙𝑙, 𝑘𝑘  be 

non-negative integers, and 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘 be real numbers, 𝑝𝑝𝑘𝑘(𝑧𝑧) = 1
Γ(𝑘𝑘𝑘𝑘+1) 𝑧𝑧

𝑘𝑘 for all 𝑘𝑘. The ⊗ 
multiplication is defined by 

𝑝𝑝𝑗𝑗(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ 𝑝𝑝𝑙𝑙(𝜇𝜇𝜇𝜇𝛼𝛼) = 1
Γ(𝑗𝑗𝑗𝑗+1) (𝜆𝜆𝑥𝑥𝛼𝛼)𝑗𝑗 ⊗ 1

Γ(𝑙𝑙𝑙𝑙+1) (𝜇𝜇𝜇𝜇𝛼𝛼)𝑙𝑙 = 
1

Γ((𝑗𝑗+𝑙𝑙)𝛼𝛼+1) �
𝑗𝑗 + 𝑙𝑙
𝑗𝑗 � (𝜆𝜆𝑥𝑥𝛼𝛼)𝑗𝑗(𝜇𝜇𝜇𝜇𝛼𝛼)𝑙𝑙, (5) 

where �𝑗𝑗 + 𝑙𝑙
𝑗𝑗 � = (𝑗𝑗+𝑙𝑙)!

𝑗𝑗!𝑙𝑙! . 

If 𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) and  𝑔𝑔𝛼𝛼(𝜇𝜇𝜇𝜇𝛼𝛼) are two fractional functions, 
                𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜆𝜆𝑥𝑥𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘
Γ(𝑘𝑘𝑘𝑘+1) (𝜆𝜆𝑥𝑥𝛼𝛼)𝑘𝑘∞

𝑘𝑘=0 ,             (6) 

 𝑔𝑔𝛼𝛼(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘

Γ(𝑘𝑘𝑘𝑘+1) (𝜇𝜇𝜇𝜇𝛼𝛼)𝑘𝑘∞
𝑘𝑘=0 ,             (7) 

then we define  
  𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ 𝑔𝑔𝛼𝛼(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ ∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼)  

                      = ∑ (∑ 𝑎𝑎𝑘𝑘−𝑚𝑚𝑏𝑏𝑚𝑚𝑝𝑝𝑘𝑘−𝑚𝑚(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ 𝑝𝑝𝑚𝑚(𝜇𝜇𝑦𝑦𝛼𝛼)𝑘𝑘
𝑚𝑚=0 )∞

𝑘𝑘=0  .         (8) 

 

Proposition 
2.5: 𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ 𝑔𝑔𝛼𝛼(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 1

Γ(𝑘𝑘𝑘𝑘+1) ∑ �𝑘𝑘𝑚𝑚�𝑎𝑎𝑘𝑘−𝑚𝑚𝑏𝑏𝑚𝑚
𝑘𝑘
𝑚𝑚=0

∞
𝑘𝑘=0 (𝜆𝜆𝑥𝑥𝛼𝛼)𝑘𝑘−𝑚𝑚(𝜇𝜇𝜇𝜇𝛼𝛼)𝑚𝑚. (9) 

Definition 2.6: Let �𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼)�⊗𝑛𝑛 = 𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗⋯⊗ 𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) be the 𝑛𝑛 times product 
of the fractional function 𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼). If 𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗ 𝑔𝑔𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) = 1, then 𝑔𝑔𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼) is called 
the ⊗ reciprocal of 𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼), and is denoted by �𝑓𝑓𝛼𝛼(𝜆𝜆𝑥𝑥𝛼𝛼)�⊗−1

. 
Definition 2.7: If f (𝑧𝑧) = ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=0 𝑧𝑧𝑘𝑘, 𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼), then 

 𝑓𝑓⊗𝛼𝛼�𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼)� = ∑ 𝑎𝑎𝑘𝑘∞
𝑘𝑘=0 �𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼)�⊗𝑘𝑘

.                  (10) 
The following is the method we used in this paper. 

Theorem 2.8 (chain rule for fractional derivatives) ([16]): Suppose that f (𝑧𝑧) =
∑ 𝑎𝑎𝑘𝑘∞
𝑘𝑘=0 𝑧𝑧𝑘𝑘 , 𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘∞

𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼). If 𝑓𝑓⊗𝛼𝛼�𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼)� =
∑ 𝑎𝑎𝑘𝑘∞
𝑘𝑘=0 �𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼)�⊗𝑘𝑘 and 𝑓𝑓⊗𝛼𝛼

′ �𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼)� = ∑ 𝑎𝑎𝑘𝑘∞
𝑘𝑘=1 𝑘𝑘�𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼)�⊗(𝑘𝑘−1)

, then 
� 𝐷𝐷0 𝑥𝑥𝛼𝛼�� 𝑓𝑓⊗𝛼𝛼�𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼)�� = 𝑓𝑓⊗𝛼𝛼

′ �𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼)�⊗ � 𝐷𝐷0 𝑥𝑥𝛼𝛼�[𝑔𝑔𝛼𝛼(𝜇𝜇𝑥𝑥𝛼𝛼)].           (11) 

3 Major results and discussions 

3.1 The first order 𝛂𝛂-fractional differential equation 

 𝑦𝑦 = 𝑓𝑓�𝑥𝑥, 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦]�. (0 < 𝛼𝛼 ≤ 1)                  (12) 
We solve Eq. (13) as follows: 
Let 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑝𝑝 , then Eq. (13) becomes   𝑦𝑦 = 𝑓𝑓(𝑥𝑥, 𝑝𝑝) .                                                             

(13) 
By chain rule for fractional derivatives, we have 

𝑝𝑝 = 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑓𝑓] + 𝐷𝐷0 𝑝𝑝𝛼𝛼[𝑓𝑓] ⊗ 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑝𝑝].             (14) 
Eq. (15) is a first order α-fractional differential equation with respect to 𝑥𝑥, 𝑝𝑝.  
Case 3.1.1 If the general solution of Eq. (14) is 𝑝𝑝 = 𝜑𝜑(𝑥𝑥, 𝑐𝑐), then 𝑦𝑦 = 𝑓𝑓�𝑥𝑥, 𝜑𝜑(𝑥𝑥, 𝑐𝑐)� is 

the general solution of Eq. (12). 
Case 3.1.2 If the general solution of Eq. (14) is 𝑥𝑥 = 𝜓𝜓(𝑝𝑝, 𝑐𝑐), then the general solution of 

Eq. (12) is the parametric equation form � 𝑥𝑥 = 𝜓𝜓(𝑝𝑝, 𝑐𝑐)
𝑦𝑦 = 𝑓𝑓(𝜓𝜓(𝑝𝑝, 𝑐𝑐), 𝑝𝑝)

�, where 𝑝𝑝 is a parameter and 

𝑐𝑐 is any constant.         
Case 3.1.3 If the general solution of Eq. (14) is Λ(𝑥𝑥, 𝑝𝑝, 𝑐𝑐) = 0, then we obtain the 

general solution of Eq. (12) is �Λ(𝑥𝑥, 𝑝𝑝, 𝑐𝑐) = 0
𝑦𝑦 = 𝑓𝑓(𝑥𝑥, 𝑝𝑝)

�, where 𝑝𝑝 is a parameter and 𝑐𝑐 is any 

constant. On the other hand, we note that fractional Clairaut’s differential equation ([17]) is 
a special case of Eq. (12). 

3.2 Consider the first order 𝛂𝛂-fractional differential equation 

𝑥𝑥 = 𝑓𝑓�𝑦𝑦, 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦]�. (0 < 𝛼𝛼 ≤ 1)                   (15) 
Let 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑝𝑝, then by chain rule for fractional derivatives, we obtain 

 𝑝𝑝⊗−1 = 𝐷𝐷0 𝑦𝑦𝛼𝛼[𝑓𝑓] + 𝐷𝐷0 𝑝𝑝𝛼𝛼[𝑓𝑓] ⊗ 𝐷𝐷0 𝑦𝑦𝛼𝛼[𝑝𝑝].                 (16) 
Since Eq. (16) is a first order α-fractional differential equation with respect to 𝑦𝑦, 𝑝𝑝. If 

the general solution of Eq. (16) is Θ(𝑦𝑦, 𝑝𝑝, 𝑐𝑐) = 0, then �Θ(𝑦𝑦, 𝑝𝑝, 𝑐𝑐) = 0
𝑥𝑥 = 𝑓𝑓(𝑦𝑦, 𝑝𝑝)

� is the general 

solution of Eq. (15).  
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3.3 Consider the first order 𝛂𝛂-fractional differential equation 

 𝐹𝐹�𝑥𝑥, 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦]� = 0. (0 < 𝛼𝛼 ≤ 1)                    (17) 
We also make 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑝𝑝, so 𝐹𝐹(𝑥𝑥, 𝑝𝑝) = 0. This equation represents a curve in the 

plane. If we express this curve as a parametric equation �𝑥𝑥 = 𝜑𝜑(𝑡𝑡)
𝑝𝑝 = 𝜓𝜓(𝑡𝑡)

� , then by chain rule  

𝑝𝑝 = 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝐷𝐷0 𝑡𝑡𝛼𝛼[𝑦𝑦] ⊗ � 𝐷𝐷0 𝑡𝑡𝛼𝛼[𝜑𝜑(𝑡𝑡)]�⊗−1
.            (18) 

It follows that  
𝐷𝐷0 𝑡𝑡𝛼𝛼[𝑦𝑦] = 𝐷𝐷0 𝑡𝑡𝛼𝛼[𝜑𝜑(𝑡𝑡)] ⊗ 𝜓𝜓(𝑡𝑡).                    (19) 

Therefore, we obtain the general solution of Eq. (17) is the following parametric 
equation 

� 𝑥𝑥 = 𝜑𝜑(𝑡𝑡)
𝑦𝑦 = 𝐼𝐼0 𝑡𝑡𝛼𝛼� 𝐷𝐷0 𝑡𝑡𝛼𝛼[𝜑𝜑(𝑡𝑡)] ⊗ 𝜓𝜓(𝑡𝑡)� + 𝑐𝑐

�.                    (20) 

3.4 The first order α-fractional differential equation 

𝐹𝐹�𝑦𝑦, 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦]� = 0. (0 < 𝛼𝛼 ≤ 1)                  (21) 
Let 𝑝𝑝 = 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦], then 𝐹𝐹(𝑦𝑦, 𝑝𝑝) = 0. This equation represents a plane curve. If this curve 

can express as a parametric equation �𝑦𝑦 = 𝜑𝜑(𝑠𝑠)
𝑝𝑝 = 𝜓𝜓(𝑠𝑠)

� , then using chain rule yields  

𝜓𝜓(𝑡𝑡) = 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝐷𝐷0 𝑠𝑠𝛼𝛼[𝜑𝜑(𝑠𝑠)] ⊗ � 𝐷𝐷0 𝑠𝑠𝛼𝛼[𝑥𝑥]�⊗−1
.          (22) 

It follows that 
𝐷𝐷0 𝑠𝑠𝛼𝛼[𝑥𝑥] = 𝐷𝐷0 𝑠𝑠𝛼𝛼[𝜑𝜑(𝑠𝑠)] ⊗ �𝜓𝜓(𝑠𝑠)�⊗−1

.              (23) 
Thus the general solution of Eq. (21) is a parametric equation 

�𝑥𝑥 = 𝐼𝐼0 𝑠𝑠𝛼𝛼 � 𝐷𝐷0 𝑠𝑠𝛼𝛼[𝜑𝜑(𝑠𝑠)] ⊗ �𝜓𝜓(𝑠𝑠)�⊗−1� + 𝑐𝑐
𝑦𝑦 = 𝜑𝜑(𝑠𝑠)

� .                 (24) 

4 Applications 
For the four types of first order fractional differential equations discussed in this paper, 
some examples are provided and we find their general solutions. 

4.1 Example: Consider the first order 1 2� - fractional Clairaut’s differential equation  

𝑦𝑦 = 1
Γ�32�

𝑥𝑥1 2� ⊗ 𝐷𝐷0 𝑥𝑥
1 2� [𝑦𝑦] + 3 � 𝐷𝐷0 𝑥𝑥

1 2� [𝑦𝑦]�
⊗2

.                (25) 

Let 𝑝𝑝 = 𝐷𝐷0 𝑥𝑥
1 2� [𝑦𝑦], then 

 𝑦𝑦 = 1
Γ�32�

𝑥𝑥1 2� ⊗ 𝑝𝑝 + 3𝑝𝑝2.                          (26) 

Seeking the fractional derivative of 𝑥𝑥 on both sides of Eq. (26) yields 

 𝑝𝑝 = 𝑝𝑝 + 1
Γ�32�

𝑥𝑥1 2� ⊗ 𝐷𝐷0 𝑥𝑥
1 2� [𝑝𝑝] + 6𝑝𝑝⊗ 𝐷𝐷0 𝑥𝑥

1 2� [𝑝𝑝].           (27) 

So,  

� 1
Γ�32�

𝑥𝑥1 2� + 6𝑝𝑝�⊗ 𝐷𝐷0 𝑥𝑥
1 2� [𝑝𝑝] = 0.                   (28) 
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3.3 Consider the first order 𝛂𝛂-fractional differential equation 

 𝐹𝐹�𝑥𝑥, 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦]� = 0. (0 < 𝛼𝛼 ≤ 1)                    (17) 
We also make 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑝𝑝, so 𝐹𝐹(𝑥𝑥, 𝑝𝑝) = 0. This equation represents a curve in the 

plane. If we express this curve as a parametric equation �𝑥𝑥 = 𝜑𝜑(𝑡𝑡)
𝑝𝑝 = 𝜓𝜓(𝑡𝑡)

� , then by chain rule  

𝑝𝑝 = 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝐷𝐷0 𝑡𝑡𝛼𝛼[𝑦𝑦] ⊗ � 𝐷𝐷0 𝑡𝑡𝛼𝛼[𝜑𝜑(𝑡𝑡)]�⊗−1
.            (18) 

It follows that  
𝐷𝐷0 𝑡𝑡𝛼𝛼[𝑦𝑦] = 𝐷𝐷0 𝑡𝑡𝛼𝛼[𝜑𝜑(𝑡𝑡)] ⊗ 𝜓𝜓(𝑡𝑡).                    (19) 

Therefore, we obtain the general solution of Eq. (17) is the following parametric 
equation 

� 𝑥𝑥 = 𝜑𝜑(𝑡𝑡)
𝑦𝑦 = 𝐼𝐼0 𝑡𝑡𝛼𝛼� 𝐷𝐷0 𝑡𝑡𝛼𝛼[𝜑𝜑(𝑡𝑡)] ⊗ 𝜓𝜓(𝑡𝑡)� + 𝑐𝑐

�.                    (20) 

3.4 The first order α-fractional differential equation 

𝐹𝐹�𝑦𝑦, 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦]� = 0. (0 < 𝛼𝛼 ≤ 1)                  (21) 
Let 𝑝𝑝 = 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦], then 𝐹𝐹(𝑦𝑦, 𝑝𝑝) = 0. This equation represents a plane curve. If this curve 

can express as a parametric equation �𝑦𝑦 = 𝜑𝜑(𝑠𝑠)
𝑝𝑝 = 𝜓𝜓(𝑠𝑠)

� , then using chain rule yields  

𝜓𝜓(𝑡𝑡) = 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝐷𝐷0 𝑠𝑠𝛼𝛼[𝜑𝜑(𝑠𝑠)] ⊗ � 𝐷𝐷0 𝑠𝑠𝛼𝛼[𝑥𝑥]�⊗−1
.          (22) 

It follows that 
𝐷𝐷0 𝑠𝑠𝛼𝛼[𝑥𝑥] = 𝐷𝐷0 𝑠𝑠𝛼𝛼[𝜑𝜑(𝑠𝑠)] ⊗ �𝜓𝜓(𝑠𝑠)�⊗−1

.              (23) 
Thus the general solution of Eq. (21) is a parametric equation 

�𝑥𝑥 = 𝐼𝐼0 𝑠𝑠𝛼𝛼 � 𝐷𝐷0 𝑠𝑠𝛼𝛼[𝜑𝜑(𝑠𝑠)] ⊗ �𝜓𝜓(𝑠𝑠)�⊗−1� + 𝑐𝑐
𝑦𝑦 = 𝜑𝜑(𝑠𝑠)

� .                 (24) 

4 Applications 
For the four types of first order fractional differential equations discussed in this paper, 
some examples are provided and we find their general solutions. 

4.1 Example: Consider the first order 1 2� - fractional Clairaut’s differential equation  

𝑦𝑦 = 1
Γ�32�

𝑥𝑥1 2� ⊗ 𝐷𝐷0 𝑥𝑥
1 2� [𝑦𝑦] + 3 � 𝐷𝐷0 𝑥𝑥

1 2� [𝑦𝑦]�
⊗2

.                (25) 

Let 𝑝𝑝 = 𝐷𝐷0 𝑥𝑥
1 2� [𝑦𝑦], then 

 𝑦𝑦 = 1
Γ�32�

𝑥𝑥1 2� ⊗ 𝑝𝑝 + 3𝑝𝑝2.                          (26) 

Seeking the fractional derivative of 𝑥𝑥 on both sides of Eq. (26) yields 

 𝑝𝑝 = 𝑝𝑝 + 1
Γ�32�

𝑥𝑥1 2� ⊗ 𝐷𝐷0 𝑥𝑥
1 2� [𝑝𝑝] + 6𝑝𝑝⊗ 𝐷𝐷0 𝑥𝑥

1 2� [𝑝𝑝].           (27) 

So,  

� 1
Γ�32�

𝑥𝑥1 2� + 6𝑝𝑝�⊗ 𝐷𝐷0 𝑥𝑥
1 2� [𝑝𝑝] = 0.                   (28) 

 

If 𝐷𝐷0 𝑥𝑥
1 2� [𝑝𝑝] = 0, then 𝑝𝑝 = 𝑐𝑐 is a constant. Thus, 𝑦𝑦 = 𝑐𝑐

Γ�32�
𝑥𝑥1 2� + 3𝑐𝑐2. If 1

Γ�32�
𝑥𝑥1 2� +

6𝑝𝑝 = 0, then 𝑥𝑥1 2� = −6Γ �32� 𝑝𝑝, and hence 𝑥𝑥 = 36 �Γ �32��
2
𝑝𝑝2. So, the general solution of 

Eq. (25) is the parameter equation 

�𝑥𝑥 = 36 �Γ �32��
2
𝑝𝑝2

𝑦𝑦 = −6𝑝𝑝𝑝𝑝 + 3𝑐𝑐2
�.                            (29) 

Example 4.2: The first order 1 3� - fractional differential equation 

𝐷𝐷0 𝑥𝑥
1 3� [𝑦𝑦] = �𝑦𝑦1 3� + Γ �43��⊗ 𝑥𝑥.                     (30) 

Since Eq. (30) is separable, it follows from [18] that it has the general solution    

𝑦𝑦1 3� = 𝑐𝑐 ∙ 𝐸𝐸1 3� � 1
Γ�73�

𝑥𝑥4 3� � − Γ �43�.                      (31) 

Example 4.3: Consider the first order 1 4� - fractional differential equation 

� 𝐷𝐷0 𝑥𝑥
1 4� [𝑦𝑦]�

⊗3
= 1

Γ�32�
𝑥𝑥1 2� + 2

Γ�54�
𝑥𝑥1 4� + 3.               (32) 

Let 𝑥𝑥1 4� = 𝑡𝑡, i.e., 𝑥𝑥 = 𝑡𝑡4. If 𝑝𝑝 = 𝐷𝐷0 𝑥𝑥
1 4� [𝑦𝑦], then 𝑝𝑝3 = 1

Γ�32�
𝑡𝑡2 + 2

Γ�54�
𝑡𝑡 + 3. Therefore, 

𝑝𝑝 = 𝐷𝐷0 𝑥𝑥
1 4� [𝑦𝑦] = Γ �54� ∙ 𝐷𝐷0 𝑡𝑡

1 4� [𝑦𝑦] . It follows that 𝐷𝐷0 𝑡𝑡
1 4� [𝑦𝑦] = 1

Γ�54�
𝑝𝑝 = 1

Γ�54�
� 1
Γ�32�

𝑡𝑡2 +
2

Γ�54�
𝑡𝑡 + 3�

1 3� .       

And hence,  𝑦𝑦 = 𝐼𝐼0 𝑡𝑡
1 4� � 1

Γ�54�
� 1
Γ�32�

𝑡𝑡2 + 2
Γ�54�

𝑡𝑡 + 3�
1 3�
� + 𝑐𝑐 . Therefore, the general 

solution of Eq. (32) is the parametric equation 

⎩
⎨
⎧ 𝑥𝑥 = 𝑡𝑡4

𝑦𝑦 = 𝐼𝐼0 𝑡𝑡
1 4� � 1

Γ�54�
� 1
Γ�32�

𝑡𝑡2 + 2
Γ�54�

𝑡𝑡 + 3�
1 3�
� + 𝑐𝑐

�.                (33) 

Example 4.4: The first order 1 5� - fractional differential equation 

� 𝐷𝐷0 𝑥𝑥
1 5� [𝑦𝑦]�

⊗7
= 1

Γ�95�
𝑦𝑦4 5� − 3

Γ�85�
𝑦𝑦3 5� + 4

Γ�75�
𝑦𝑦2 5� − 6𝐸𝐸1 5� � 1

Γ�65�
𝑦𝑦1 5� �.         (34) 

If 𝑦𝑦1 5� = 𝑠𝑠, i.e., 𝑦𝑦 = 𝑠𝑠5. Let 𝑝𝑝 = 𝐷𝐷0 𝑥𝑥
1 5� [𝑦𝑦], then 

 𝑝𝑝7 = 1
Γ�95�

𝑠𝑠4 − 3
Γ�85�

𝑠𝑠3 + 4
Γ�75�

𝑠𝑠2 − 6𝐸𝐸1 5� � 1
Γ�65�

𝑠𝑠�.              (35) 

So, 1𝑝𝑝 = 𝐷𝐷0 𝑦𝑦
1 5� [𝑥𝑥] = Γ �65� ∙ 𝐷𝐷0 𝑠𝑠

1 5� [𝑥𝑥]. It follows that 

 𝐷𝐷0 𝑠𝑠
1 5� [𝑥𝑥] = 1

Γ�65�
∙ 1𝑝𝑝 = 1

Γ�65�
∙ 1

� 1
Γ�95�

𝑠𝑠4− 3
Γ�85�

𝑠𝑠3+ 4
Γ�75�

𝑠𝑠2−6𝐸𝐸1 5�
� 1
Γ�65�

𝑠𝑠��

1 7�
.        (36) 

And hence, 
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𝑥𝑥 = 𝐼𝐼0 𝑠𝑠
1 5�

⎣
⎢
⎢
⎢
⎢
⎡
1

Γ�65�
∙ 1

� 1
Γ�95�

𝑠𝑠4− 3
Γ�85�

𝑠𝑠3+ 4
Γ�75�

𝑠𝑠2−6𝐸𝐸1 5�
� 1
Γ�65�

𝑠𝑠��

1 7�

⎦
⎥
⎥
⎥
⎥
⎤
+ 𝑐𝑐.           (37) 

Thus, the general solution of Eq. (34) is the parametric equation 

⎩
⎪⎪
⎨
⎪⎪
⎧
𝑥𝑥 = 𝐼𝐼0 𝑠𝑠

1 5�

⎣
⎢
⎢
⎢
⎢
⎡
1

Γ�65�
∙ 1

� 1
Γ�95�

𝑠𝑠4− 3
Γ�85�

𝑠𝑠3+ 4
Γ�75�

𝑠𝑠2−6𝐸𝐸1 5� � 1
Γ�65�

𝑠𝑠��

1 7�

⎦
⎥
⎥
⎥
⎥
⎤
+ 𝑐𝑐

𝑦𝑦 = 𝑠𝑠5

�.               (38) 

5 Conclusions 
We can see from the above discussion, the general solutions of four types of first order 
fractional differential equations studied in this article can be obtained mainly using a new 
multiplication and chain rule for fractional derivatives. In fact, the applications of the two 
methods are extensive, and can be used to easily solve many fractional differential 
equations. In fact, our results are generalizations of classical first order differential 
equations. In the future, we will use the Jumarie type of modified R-L fractional derivatives 
and the new multiplication to expand our research into the problems of engineering 
mathematics and fractional calculus.  
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⎣
⎢
⎢
⎢
⎢
⎡
1
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� 1
Γ�95�
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Γ�75�
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1 7�

⎦
⎥
⎥
⎥
⎥
⎤
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Thus, the general solution of Eq. (34) is the parametric equation 

⎩
⎪⎪
⎨
⎪⎪
⎧
𝑥𝑥 = 𝐼𝐼0 𝑠𝑠

1 5�

⎣
⎢
⎢
⎢
⎢
⎡
1

Γ�65�
∙ 1

� 1
Γ�95�

𝑠𝑠4− 3
Γ�85�

𝑠𝑠3+ 4
Γ�75�

𝑠𝑠2−6𝐸𝐸1 5� � 1
Γ�65�

𝑠𝑠��

1 7�

⎦
⎥
⎥
⎥
⎥
⎤
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�.               (38) 
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