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Abstract. In this paper, we study some types of fractional differential 
equations which can be transformed into separable variables, regarding the 
Jumarie type of modified Riemann-Liouville fractional derivatives. We use 
a new multiplication of fractional functions and product rule for fractional 
derivatives to obtain the solutions of these fractional differential equations. 
Furthermore, some examples are given to demonstrate our results. 

1 Introduction 
Fractional calculus, a popular name used to denote the calculus of non-integer order, is 

as old as the calculus of integer order as created independently by Newton and Leibniz. In 
contrast with the calculus of integer order, fractional calculus has been granted a specific 
area of mathematics only in 1974, after the first international congress dedicated 
exclusively to it. Before this congress there were only sporadic independent papers, without 
a consolidated line [21-24]. It is nowadays well established that several real life phenomena 
are better described by fractional differential equations, where the term fractional, used for 
historical reasons, refers to derivative operators of any real positive order. Applications of 
fractional differential equations are commonly found in bioengineering, chemistry, control 
theory, electronic circuit theory, mechanics, physics, seismology, signal processing and so 
on ([1-20]). We refer to [8] for an historical perspective on fractional calculus. Unlike 
standard calculus, there is no unique definition of derivation and integration in fractional 
calculus. The commonly used definition is the Riemann-Liouville (R-L) fractional 
derivative [21]. Other useful definitions include Caputo definition of fractional derivative 
[22], the Grunwald-Letinikov (G-L) fractional derivative [23], and Jumarie’s modified R-L 
fractional derivative [25].  

In this paper, we study three types of fractional differential equations which can be 
transformed into separable variables, regarding the Jumarie type of modified R-L fractional 
derivatives. We define a new multiplication of fractional functions and use product rule for 
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fractional derivatives to solve these fractional differential equations. On the other hand, we 
give some examples to illustrate the methods used in this paper. 

2 Preliminaries and methods 
At first, the fractional calculus used in this article is introduced below. 

Definition 2.1: Suppose that 𝛼𝛼 is a real number and 𝑝𝑝 is a positive integer. Then the 
modified Riemann-Liouville fractional derivatives of Jumarie type ([25]) is defined by  

𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼[𝑓𝑓(𝑥𝑥)] =

⎩⎪
⎨
⎪⎧

1
Γ(−𝛼𝛼)∫ (𝑥𝑥 − 𝜏𝜏)−𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏,                      if  𝛼𝛼 < 0𝑥𝑥

𝑎𝑎
1

Γ(1−𝛼𝛼)
𝑑𝑑
𝑑𝑑𝑥𝑥 ∫ (𝑥𝑥 − 𝜏𝜏)−𝛼𝛼[𝑓𝑓(𝜏𝜏) − 𝑓𝑓(𝑎𝑎)]𝑥𝑥

𝑎𝑎 𝑑𝑑𝜏𝜏      if  0 ≤ 𝛼𝛼 < 1  
𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥𝑝𝑝 � 𝐷𝐷𝑎𝑎 𝑥𝑥

𝛼𝛼−𝑝𝑝�[𝑓𝑓(𝑥𝑥)],                     if  𝑝𝑝 ≤ 𝛼𝛼 < 𝑝𝑝 + 1

     (1) 

where 𝛤𝛤(𝜌𝜌) = ∫ 𝑡𝑡𝜌𝜌−1𝑒𝑒−𝑡𝑡∞
0 dt  is the gamma function defined on 𝜌𝜌 > 0.  

Proposition 2.2 ([26]): Let 𝛼𝛼,𝛽𝛽, 𝑐𝑐 be real numbers and 𝛽𝛽 ≥ 𝛼𝛼 > 0, then 

𝐷𝐷0 𝑥𝑥𝛼𝛼�𝑥𝑥𝛽𝛽� = Γ(𝛽𝛽+1)
Γ(𝛽𝛽−𝛼𝛼+1) 𝑥𝑥

𝛽𝛽−𝛼𝛼,                             (2) 

and 

                 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑐𝑐] = 0.                                  (3) 

Definition 2.3 ([27]): The Mittag-Leffler function is defined by 

𝐸𝐸𝛼𝛼(𝑧𝑧) = ∑ 𝑧𝑧𝑘𝑘
Γ(𝑘𝑘𝛼𝛼+1)

∞
𝑘𝑘=0 ,                              (4) 

where  𝛼𝛼  is a real number, α > 0, and 𝑧𝑧 is a complex variable. 
Next, a new multiplication of fractional functions is introduced below. 
Definition 2.4 ([9]): Suppose that 𝜆𝜆, 𝜇𝜇, 𝑧𝑧 are complex numbers, 0 < 𝛼𝛼 ≤ 1, 𝑗𝑗, 𝑙𝑙, 𝑘𝑘 are 

non-negative integers, and 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘 are real numbers, 𝑝𝑝𝑘𝑘(𝑧𝑧) = 1
Γ(𝑘𝑘𝛼𝛼+1) 𝑧𝑧

𝑘𝑘 for all 𝑘𝑘. The ⊗ 
multiplication is defined by 

𝑝𝑝𝑗𝑗(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗𝑝𝑝𝑙𝑙(𝜇𝜇𝜇𝜇𝛼𝛼) = 1
Γ(𝑗𝑗𝛼𝛼+1) (𝜆𝜆𝑥𝑥𝛼𝛼)𝑗𝑗 ⊗ 1

Γ(𝑙𝑙𝛼𝛼+1) (𝜇𝜇𝜇𝜇𝛼𝛼)𝑙𝑙 = 
1

Γ((𝑗𝑗+𝑙𝑙)𝛼𝛼+1) �
𝑗𝑗 + 𝑙𝑙
𝑗𝑗 � (𝜆𝜆𝑥𝑥𝛼𝛼)𝑗𝑗(𝜇𝜇𝜇𝜇𝛼𝛼)𝑙𝑙, (5) 

where �𝑗𝑗 + 𝑙𝑙
𝑗𝑗 � = (𝑗𝑗+𝑙𝑙)!

𝑗𝑗!𝑙𝑙! . 

If 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) and 𝑔𝑔(𝜇𝜇𝜇𝜇𝛼𝛼) are two fractional functions, 

 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜆𝜆𝑥𝑥𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘

Γ(𝑘𝑘𝛼𝛼+1) (𝜆𝜆𝑥𝑥𝛼𝛼)𝑘𝑘∞
𝑘𝑘=0 ,             (6) 

 𝑔𝑔(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘

Γ(𝑘𝑘𝛼𝛼+1) (𝜇𝜇𝜇𝜇𝛼𝛼)𝑘𝑘∞
𝑘𝑘=0 ,             (7) 

then we define 
     𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗𝑔𝑔(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼)  

                      = ∑ �∑ 𝑎𝑎𝑘𝑘−𝑚𝑚𝑏𝑏𝑚𝑚𝑝𝑝𝑘𝑘−𝑚𝑚(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗𝑝𝑝𝑚𝑚(𝜇𝜇𝜇𝜇𝛼𝛼)𝑘𝑘
𝑚𝑚=0 �∞

𝑘𝑘=0  .      (8) 

2

E3S Web of Conferences 268, 01080 (2021) https://doi.org/10.1051/e3sconf/202126801080
VESEP2020



 

fractional derivatives to solve these fractional differential equations. On the other hand, we 
give some examples to illustrate the methods used in this paper. 

2 Preliminaries and methods 
At first, the fractional calculus used in this article is introduced below. 

Definition 2.1: Suppose that 𝛼𝛼 is a real number and 𝑝𝑝 is a positive integer. Then the 
modified Riemann-Liouville fractional derivatives of Jumarie type ([25]) is defined by  

𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼[𝑓𝑓(𝑥𝑥)] =

⎩⎪
⎨
⎪⎧

1
Γ(−𝛼𝛼)∫ (𝑥𝑥 − 𝜏𝜏)−𝛼𝛼−1𝑓𝑓(𝜏𝜏)𝑑𝑑𝜏𝜏,                      if  𝛼𝛼 < 0𝑥𝑥

𝑎𝑎
1

Γ(1−𝛼𝛼)
𝑑𝑑
𝑑𝑑𝑥𝑥 ∫ (𝑥𝑥 − 𝜏𝜏)−𝛼𝛼[𝑓𝑓(𝜏𝜏) − 𝑓𝑓(𝑎𝑎)]𝑥𝑥

𝑎𝑎 𝑑𝑑𝜏𝜏      if  0 ≤ 𝛼𝛼 < 1  
𝑑𝑑𝑝𝑝
𝑑𝑑𝑥𝑥𝑝𝑝 � 𝐷𝐷𝑎𝑎 𝑥𝑥

𝛼𝛼−𝑝𝑝�[𝑓𝑓(𝑥𝑥)],                     if  𝑝𝑝 ≤ 𝛼𝛼 < 𝑝𝑝 + 1

     (1) 

where 𝛤𝛤(𝜌𝜌) = ∫ 𝑡𝑡𝜌𝜌−1𝑒𝑒−𝑡𝑡∞
0 dt  is the gamma function defined on 𝜌𝜌 > 0.  

Proposition 2.2 ([26]): Let 𝛼𝛼,𝛽𝛽, 𝑐𝑐 be real numbers and 𝛽𝛽 ≥ 𝛼𝛼 > 0, then 

𝐷𝐷0 𝑥𝑥𝛼𝛼�𝑥𝑥𝛽𝛽� = Γ(𝛽𝛽+1)
Γ(𝛽𝛽−𝛼𝛼+1) 𝑥𝑥

𝛽𝛽−𝛼𝛼,                             (2) 

and 

                 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑐𝑐] = 0.                                  (3) 

Definition 2.3 ([27]): The Mittag-Leffler function is defined by 

𝐸𝐸𝛼𝛼(𝑧𝑧) = ∑ 𝑧𝑧𝑘𝑘
Γ(𝑘𝑘𝛼𝛼+1)

∞
𝑘𝑘=0 ,                              (4) 

where  𝛼𝛼  is a real number, α > 0, and 𝑧𝑧 is a complex variable. 
Next, a new multiplication of fractional functions is introduced below. 
Definition 2.4 ([9]): Suppose that 𝜆𝜆, 𝜇𝜇, 𝑧𝑧 are complex numbers, 0 < 𝛼𝛼 ≤ 1, 𝑗𝑗, 𝑙𝑙, 𝑘𝑘 are 

non-negative integers, and 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘 are real numbers, 𝑝𝑝𝑘𝑘(𝑧𝑧) = 1
Γ(𝑘𝑘𝛼𝛼+1) 𝑧𝑧

𝑘𝑘 for all 𝑘𝑘. The ⊗ 
multiplication is defined by 

𝑝𝑝𝑗𝑗(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗𝑝𝑝𝑙𝑙(𝜇𝜇𝜇𝜇𝛼𝛼) = 1
Γ(𝑗𝑗𝛼𝛼+1) (𝜆𝜆𝑥𝑥𝛼𝛼)𝑗𝑗 ⊗ 1

Γ(𝑙𝑙𝛼𝛼+1) (𝜇𝜇𝜇𝜇𝛼𝛼)𝑙𝑙 = 
1

Γ((𝑗𝑗+𝑙𝑙)𝛼𝛼+1) �
𝑗𝑗 + 𝑙𝑙
𝑗𝑗 � (𝜆𝜆𝑥𝑥𝛼𝛼)𝑗𝑗(𝜇𝜇𝜇𝜇𝛼𝛼)𝑙𝑙, (5) 

where �𝑗𝑗 + 𝑙𝑙
𝑗𝑗 � = (𝑗𝑗+𝑙𝑙)!

𝑗𝑗!𝑙𝑙! . 

If 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) and 𝑔𝑔(𝜇𝜇𝜇𝜇𝛼𝛼) are two fractional functions, 

 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜆𝜆𝑥𝑥𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘

Γ(𝑘𝑘𝛼𝛼+1) (𝜆𝜆𝑥𝑥𝛼𝛼)𝑘𝑘∞
𝑘𝑘=0 ,             (6) 

 𝑔𝑔(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘

Γ(𝑘𝑘𝛼𝛼+1) (𝜇𝜇𝜇𝜇𝛼𝛼)𝑘𝑘∞
𝑘𝑘=0 ,             (7) 

then we define 
     𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗𝑔𝑔(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝜇𝜇𝛼𝛼)  

                      = ∑ �∑ 𝑎𝑎𝑘𝑘−𝑚𝑚𝑏𝑏𝑚𝑚𝑝𝑝𝑘𝑘−𝑚𝑚(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗𝑝𝑝𝑚𝑚(𝜇𝜇𝜇𝜇𝛼𝛼)𝑘𝑘
𝑚𝑚=0 �∞

𝑘𝑘=0  .      (8) 

 

Proposition 2.5: 
 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗𝑔𝑔(𝜇𝜇𝜇𝜇𝛼𝛼) = ∑ 1

Γ(𝑘𝑘𝛼𝛼+1)∑ �𝑘𝑘𝑚𝑚�𝑎𝑎𝑘𝑘−𝑚𝑚𝑏𝑏𝑚𝑚
𝑘𝑘
𝑚𝑚=0

∞
𝑘𝑘=0 (𝜆𝜆𝑥𝑥𝛼𝛼)𝑘𝑘−𝑚𝑚(𝜇𝜇𝜇𝜇𝛼𝛼)𝑚𝑚.  (9) 

Definition 2.6: Let �𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼)�⊗𝑛𝑛 = 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗⋯⊗𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) be the 𝑛𝑛 times product 
of the fractional function 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼). If 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗𝑔𝑔(𝜆𝜆𝑥𝑥𝛼𝛼) = 1, then 𝑔𝑔(𝜆𝜆𝑥𝑥𝛼𝛼) is called the 
⊗ reciprocal of 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼), and denoted as �𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼)�⊗−1

. 
Definition 2.7: If f (𝑧𝑧) = ∑ 𝑎𝑎𝑘𝑘∞

𝑘𝑘=0 𝑧𝑧𝑘𝑘, 𝑔𝑔(𝜇𝜇𝑥𝑥𝛼𝛼) = ∑ 𝑏𝑏𝑘𝑘∞
𝑘𝑘=0 𝑝𝑝𝑘𝑘(𝜇𝜇𝑥𝑥𝛼𝛼), then 

 𝑓𝑓⊗𝛼𝛼�𝑔𝑔(𝜇𝜇𝑥𝑥𝛼𝛼)� = ∑ 𝑎𝑎𝑘𝑘∞
𝑘𝑘=0 �𝑔𝑔(𝜇𝜇𝑥𝑥𝛼𝛼)�⊗𝑘𝑘

.                  (10) 

The following is the major method used in this paper. 
Theorem 2.8 (product rule for fractional derivatives) ([9]): If 0 < 𝛼𝛼 ≤ 1, 𝜆𝜆, 𝜇𝜇 are 

complex numbers, and 𝑓𝑓 ,𝑔𝑔 are fractional functions. Then 
� 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�[𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗𝑔𝑔(𝜇𝜇𝑥𝑥𝛼𝛼)] = � 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�[𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼)] ⊗𝑔𝑔(𝜇𝜇𝑥𝑥𝛼𝛼) + 𝑓𝑓(𝜆𝜆𝑥𝑥𝛼𝛼) ⊗

� 𝐷𝐷𝑎𝑎 𝑥𝑥𝛼𝛼�[𝑔𝑔(𝜇𝜇𝑥𝑥𝛼𝛼)]. (11) 

3 Results and discussions 
Here we mainly discuss three types of fractional differential equations which can be 
transformed into separable variables 

Theorem 3.1: Let 0 < 𝛼𝛼 ≤ 1, then the first order homogeneous fractional differential 
equation  

𝐷𝐷0 𝑥𝑥𝛼𝛼[𝜇𝜇] = 𝑔𝑔 �𝜇𝜇 ⊗ � 1
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼�
⊗−1

�                       (12) 

can be transformed into separable variables. 

Proof  Let 𝑢𝑢 = 𝜇𝜇 ⊗ � 1
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼�
⊗−1

, then 𝜇𝜇 = 𝑢𝑢 ⊗ 1
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼. Using product rule for 
fractional derivatives yields 

𝐷𝐷0 𝑥𝑥𝛼𝛼[𝜇𝜇] = 𝑢𝑢 + 1
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼 ⊗ 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑢𝑢].                  (13) 

And hence, 

𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑢𝑢] = (𝑔𝑔(𝑢𝑢) − 𝑢𝑢) ⊗� 1
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼�
⊗−1

.              (14) 

Since Eq. (14) is a separable variable fractional differential equation, the desired result 
holds.  

Q.e.d. 
Theorem 3.2: If 0 < 𝛼𝛼 ≤ 1, 𝐴𝐴,𝐵𝐵,𝐶𝐶 are real numbers, then the first order fractional 

differential equation 

𝐷𝐷0 𝑥𝑥𝛼𝛼[𝜇𝜇] = ℎ � 𝐴𝐴
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼 + 𝐵𝐵𝜇𝜇 + 𝐶𝐶�                       (15) 

can be transformed into separable variables. 
Proof  Let 𝑢𝑢 = 𝐴𝐴

Γ(𝛼𝛼+1)𝑥𝑥
𝛼𝛼 + 𝐵𝐵𝜇𝜇 + 𝐶𝐶, then 

𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑢𝑢] = 𝐴𝐴 + 𝐵𝐵 ∙ 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝜇𝜇].                       (16) 
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Therefore, 

𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑢𝑢] = 𝐴𝐴 + 𝐵𝐵ℎ(𝑢𝑢).                           (17) 

Eq. (17) is a separable variable fractional differential equation, and hence the desired 
result holds. 

Q.e.d. 
Theorem 3.3: Assume that 0 < 𝛼𝛼 ≤ 1 and 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐹𝐹 are real numbers, then the 

first order fractional differential equation 

𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑓𝑓 �� 𝐴𝐴
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼 + 𝐵𝐵𝑦𝑦 + 𝐶𝐶�⊗ � 𝐷𝐷
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼 + 𝐸𝐸𝑦𝑦 + 𝐹𝐹�
⊗−1

�.    (18) 

can be transformed into separable variables. 
Proof  Case 1. If 𝐶𝐶 = 𝐹𝐹 = 0, then 

      𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑓𝑓 �� 𝐴𝐴
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼 + 𝐵𝐵𝑦𝑦�⊗ � 𝐷𝐷
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼 + 𝐸𝐸𝑦𝑦�
⊗−1

�  

       = 𝑓𝑓 ��𝐴𝐴 + 𝐵𝐵𝑦𝑦⊗ � 1
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼�
⊗−1

�⊗ �𝐷𝐷 + 𝐸𝐸𝑦𝑦 ⊗ � 1
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼�
⊗−1

�
⊗−1

�   

              = 𝑔𝑔 �𝑦𝑦 ⊗ � 1
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼�
⊗−1

�.                          (19) 
Thus, by Theorem 3.1, the desired result holds.                                
Case 2. If 𝐶𝐶2 + 𝐹𝐹2 ≠ 0 and �𝐴𝐴 𝐵𝐵

𝐷𝐷 𝐸𝐸� ≠ 0. Then the system of equations 

�
𝐴𝐴

Γ(𝛼𝛼+1) 𝑥𝑥𝛼𝛼 + 𝐵𝐵𝑦𝑦 + 𝐶𝐶 = 0
𝐷𝐷

Γ(𝛼𝛼+1) 𝑥𝑥𝛼𝛼 + 𝐸𝐸𝑦𝑦 + 𝐹𝐹 = 0
                            (20) 

has a unique solution 

�
1

Γ(𝛼𝛼+1) 𝑥𝑥𝛼𝛼 = 𝜆𝜆
𝑦𝑦 = 𝜇𝜇

                                  (21) 

Let �
1

Γ(𝛼𝛼+1)𝑋𝑋
𝛼𝛼 = 1

Γ(𝛼𝛼+1)𝑥𝑥
𝛼𝛼 − 𝜆𝜆

𝑌𝑌 = 𝑦𝑦 − 𝜇𝜇
, then �

𝐴𝐴
Γ(𝛼𝛼+1)𝑋𝑋

𝛼𝛼 + 𝐵𝐵𝑌𝑌 = 0
𝐷𝐷

Γ(𝛼𝛼+1)𝑋𝑋
𝛼𝛼 + 𝐸𝐸𝑌𝑌 = 0

 , and hence 

  𝐷𝐷0 𝑋𝑋
𝛼𝛼[𝑌𝑌] = 𝑓𝑓 ��𝐴𝐴 + 𝐵𝐵𝑌𝑌⊗ � 1

Γ(𝛼𝛼+1)𝑋𝑋
𝛼𝛼�

⊗−1
�⊗ �𝐷𝐷 + 𝐸𝐸𝑌𝑌 ⊗ � 1

Γ(𝛼𝛼+1)𝑋𝑋
𝛼𝛼�

⊗−1
�
⊗−1

�  

= 𝑔𝑔 �𝑌𝑌 ⊗ � 1
Γ(𝛼𝛼+1)𝑋𝑋

𝛼𝛼�
⊗−1

�.                               (22) 
Therefore, by Theorem 3.1, the desired result holds. 
Case 3. If 𝐶𝐶2 + 𝐹𝐹2 ≠ 0  and �𝐴𝐴 𝐵𝐵

𝐷𝐷 𝐸𝐸� = 0 . There are three situations to discuss: 
(i) 𝐴𝐴 = 𝐵𝐵 = 0, then  

Eq. (18) becomes 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑓𝑓 �𝐶𝐶 ⊗ � 𝐷𝐷
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼 + 𝐸𝐸𝑦𝑦 + 𝐹𝐹�
⊗−1

�; (ii) 𝐷𝐷 = 𝐸𝐸 = 0, then 

Eq. (18) becomes 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑓𝑓 �1𝐹𝐹 ⊗ � 𝐴𝐴
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼 + 𝐵𝐵𝑦𝑦 + 𝐶𝐶�� ; (iii) 𝐴𝐴
𝐷𝐷 = 𝐵𝐵

𝐸𝐸 = 𝑘𝑘 , let  𝑢𝑢 =
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Therefore, 

𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑢𝑢] = 𝐴𝐴 + 𝐵𝐵ℎ(𝑢𝑢).                           (17) 

Eq. (17) is a separable variable fractional differential equation, and hence the desired 
result holds. 

Q.e.d. 
Theorem 3.3: Assume that 0 < 𝛼𝛼 ≤ 1 and 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸,𝐹𝐹 are real numbers, then the 

first order fractional differential equation 

𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑓𝑓 �� 𝐴𝐴
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼 + 𝐵𝐵𝑦𝑦 + 𝐶𝐶�⊗ � 𝐷𝐷
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼 + 𝐸𝐸𝑦𝑦 + 𝐹𝐹�
⊗−1

�.    (18) 

can be transformed into separable variables. 
Proof  Case 1. If 𝐶𝐶 = 𝐹𝐹 = 0, then 

      𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑓𝑓 �� 𝐴𝐴
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼 + 𝐵𝐵𝑦𝑦�⊗ � 𝐷𝐷
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼 + 𝐸𝐸𝑦𝑦�
⊗−1

�  

       = 𝑓𝑓 ��𝐴𝐴 + 𝐵𝐵𝑦𝑦⊗ � 1
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼�
⊗−1

�⊗ �𝐷𝐷 + 𝐸𝐸𝑦𝑦 ⊗ � 1
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼�
⊗−1

�
⊗−1

�   

              = 𝑔𝑔 �𝑦𝑦 ⊗ � 1
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼�
⊗−1

�.                          (19) 
Thus, by Theorem 3.1, the desired result holds.                                
Case 2. If 𝐶𝐶2 + 𝐹𝐹2 ≠ 0 and �𝐴𝐴 𝐵𝐵

𝐷𝐷 𝐸𝐸� ≠ 0. Then the system of equations 

�
𝐴𝐴

Γ(𝛼𝛼+1) 𝑥𝑥𝛼𝛼 + 𝐵𝐵𝑦𝑦 + 𝐶𝐶 = 0
𝐷𝐷

Γ(𝛼𝛼+1) 𝑥𝑥𝛼𝛼 + 𝐸𝐸𝑦𝑦 + 𝐹𝐹 = 0
                            (20) 

has a unique solution 

�
1

Γ(𝛼𝛼+1) 𝑥𝑥𝛼𝛼 = 𝜆𝜆
𝑦𝑦 = 𝜇𝜇

                                  (21) 

Let �
1

Γ(𝛼𝛼+1)𝑋𝑋
𝛼𝛼 = 1

Γ(𝛼𝛼+1)𝑥𝑥
𝛼𝛼 − 𝜆𝜆

𝑌𝑌 = 𝑦𝑦 − 𝜇𝜇
, then �

𝐴𝐴
Γ(𝛼𝛼+1)𝑋𝑋

𝛼𝛼 + 𝐵𝐵𝑌𝑌 = 0
𝐷𝐷

Γ(𝛼𝛼+1)𝑋𝑋
𝛼𝛼 + 𝐸𝐸𝑌𝑌 = 0

 , and hence 

  𝐷𝐷0 𝑋𝑋
𝛼𝛼[𝑌𝑌] = 𝑓𝑓 ��𝐴𝐴 + 𝐵𝐵𝑌𝑌⊗ � 1

Γ(𝛼𝛼+1)𝑋𝑋
𝛼𝛼�

⊗−1
�⊗ �𝐷𝐷 + 𝐸𝐸𝑌𝑌 ⊗ � 1

Γ(𝛼𝛼+1)𝑋𝑋
𝛼𝛼�

⊗−1
�
⊗−1

�  

= 𝑔𝑔 �𝑌𝑌 ⊗ � 1
Γ(𝛼𝛼+1)𝑋𝑋

𝛼𝛼�
⊗−1

�.                               (22) 
Therefore, by Theorem 3.1, the desired result holds. 
Case 3. If 𝐶𝐶2 + 𝐹𝐹2 ≠ 0  and �𝐴𝐴 𝐵𝐵

𝐷𝐷 𝐸𝐸� = 0 . There are three situations to discuss: 
(i) 𝐴𝐴 = 𝐵𝐵 = 0, then  

Eq. (18) becomes 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑓𝑓 �𝐶𝐶 ⊗ � 𝐷𝐷
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼 + 𝐸𝐸𝑦𝑦 + 𝐹𝐹�
⊗−1

�; (ii) 𝐷𝐷 = 𝐸𝐸 = 0, then 

Eq. (18) becomes 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑦𝑦] = 𝑓𝑓 �1𝐹𝐹 ⊗ � 𝐴𝐴
Γ(𝛼𝛼+1)𝑥𝑥

𝛼𝛼 + 𝐵𝐵𝑦𝑦 + 𝐶𝐶�� ; (iii) 𝐴𝐴
𝐷𝐷 = 𝐵𝐵

𝐸𝐸 = 𝑘𝑘 , let  𝑢𝑢 =

 

𝐷𝐷
Γ(𝛼𝛼+1) 𝑥𝑥

𝛼𝛼 + 𝐸𝐸𝐸𝐸 , then  𝐷𝐷0 𝑥𝑥𝛼𝛼[𝑢𝑢] = 𝐷𝐷 + 𝐸𝐸 𝐷𝐷0 𝑥𝑥𝛼𝛼[𝐸𝐸] = 𝐷𝐷 + 𝐸𝐸𝐸𝐸 �(𝑘𝑘𝑢𝑢 + 𝐶𝐶) ⊗ (𝑢𝑢 + 𝐹𝐹)⊗−1� =
𝑔𝑔(𝑢𝑢) which is a separable variable fractional differential equation. 

4 Examples 
For the three types of first order fractional differential equations discussed in this article, we 
will give some examples and find their solutions. 

Example 4.1: Consider the first order 1 3� - fractional differential equation  

𝐷𝐷0 𝑥𝑥
1 3� [𝐸𝐸] = 3𝐸𝐸 ⊗ � 1

Γ�4 3� � 𝑥𝑥
1 3� �

⊗−1
+ 2�𝐸𝐸 ⊗ � 1

Γ�4 3� � 𝑥𝑥
1 3� �

⊗−1
�
⊗2

.(23) 

Let 𝑢𝑢 = 𝐸𝐸 ⊗ � 1
Γ�4 3� � 𝑥𝑥

1 3� �
⊗−1

, then 𝐸𝐸 = 𝑢𝑢 ⊗ 1
Γ�4 3� � 𝑥𝑥

1 3� . By product rule for fractional 

derivatives, we have 𝐷𝐷0 𝑥𝑥
1 3� [𝐸𝐸] = 𝑢𝑢 + 1

Γ�4 3� � 𝑥𝑥
1 3� ⊗ 𝐷𝐷0 𝑥𝑥

1 3� [𝑢𝑢]. Thus,  

𝐷𝐷0 𝑥𝑥
1 3� [𝑢𝑢] = � 1

Γ�4 3� � 𝑥𝑥
1 3� �

⊗−1
⊗ �2𝑢𝑢 + 2𝑢𝑢⊗2�.                (24) 

Hence, we obtain the general solution of Eq. (23)  

𝐸𝐸 = 𝑐𝑐 � 1
Γ�4 3� � 𝑥𝑥

1 3� �
⊗2

⊗ � 1
Γ�4 3� � 𝑥𝑥

1 3� + 𝐸𝐸�,                  (25) 

and the particular solution 𝐸𝐸 = − 1
Γ�4 3� � 𝑥𝑥

1 3� , where 𝑐𝑐 is a constant. 

Example 4.2: We study the first order 1 2� - fractional differential equation 

𝐷𝐷0 𝑥𝑥
1 2� [𝐸𝐸] = � 1

Γ�3 2� � 𝑥𝑥
1 2� + 𝐸𝐸�

⊗2
.                       (26) 

Let 𝑣𝑣 = 1
Γ�3 2� � 𝑥𝑥

1 2� + 𝐸𝐸, then 𝐷𝐷0 𝑥𝑥
1 2� [𝑣𝑣] = 1 + 𝐷𝐷0 𝑥𝑥

1 2� [𝐸𝐸]. So, 

𝐷𝐷0 𝑥𝑥
1 2� [𝑣𝑣] = 1 + 𝑣𝑣⊗2.                           (27) 

And hence, the general solution of Eq. (26) is 
1

Γ�3 2� � 𝑥𝑥
1 2� + 𝐸𝐸 = 𝑡𝑡𝑡𝑡𝑡𝑡1 2� � 1

Γ�3 2� � 𝑥𝑥
1 2� + 𝑐𝑐�,                 (28) 

where 𝑐𝑐 is a constant. 
Example 4.3: Consider the first order 1 4� - fractional differential equation 

𝐷𝐷0 𝑥𝑥
1 4� [𝐸𝐸] = � 1

Γ�5 4� � 𝑥𝑥
1 4� − 𝐸𝐸 + 1�⊗ � 1

Γ�5 4� � 𝑥𝑥
1 4� + 𝐸𝐸 − 3�

⊗−1
.          (29) 

Let �
1

Γ�5 4� � 𝑋𝑋
1 4� = 1

Γ�5 4� � 𝑥𝑥
1 4� − 1

𝑌𝑌 = 𝐸𝐸 − 2
, then we obtain 

𝐷𝐷0 𝑋𝑋
1 4� [𝑌𝑌] = � 1

Γ�5 4� � 𝑋𝑋
1 4� − 𝑌𝑌�⊗ � 1

Γ�5 4� � 𝑋𝑋
1 4� + 𝑌𝑌�

⊗−1
.           (30) 

Let 𝑢𝑢 = 𝑌𝑌 ⊗ � 1
Γ�5 4� � 𝑋𝑋

1 4� �
⊗−1

, then 𝑌𝑌 = 𝑢𝑢 ⊗ 1
Γ�5 4� � 𝑋𝑋

1 4� . Thus, 

𝐷𝐷0 𝑋𝑋
1 4� [𝑢𝑢] = � 1

Γ�5 4� � 𝑋𝑋
1 4� �

⊗−1
⊗ �1 − 2𝑢𝑢 − 𝑢𝑢⊗2�⊗ (1 + 𝑢𝑢)⊗−1.        (31) 

Therefore, the general solution of Eq. (31) is 
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𝑌𝑌⊗2 + 2
Γ�5 4� � 𝑋𝑋

1 4� ⊗ 𝑌𝑌 − � 1
Γ�5 4� � 𝑋𝑋

1 4� �
⊗2

= 𝑐𝑐1 .             (32) 

Hence, we obtain the general solution of Eq. (29) 

𝑦𝑦⊗2 + 2
Γ�5 4� � 𝑥𝑥

1 4� ⊗ 𝑦𝑦 − � 1
Γ�5 4� � 𝑥𝑥

1 4� �
⊗2

− 6𝑦𝑦 − 2
Γ�5 4� � 𝑥𝑥

1 4� = 𝑐𝑐 ,        (33) 
where 𝑐𝑐 is a constant. 

5 Conclusions 
As mentioned above, we can obtain the solutions of three types of first order fractional 
differential equations studied in this paper by using product rule for fractional derivatives. 
In fact, the application of product rule is extensive, and can be used to easily solve many 
fractional differential equations. On the other hand, our results are generalizations of 
classical first order differential equations which can be transformed into separable variables. 
In the future, we will use the Jumarie’s modified R-L fractional derivatives and the new 
multiplication defined in this article to expand our research topics to the problems of 
applied mathematics and fractional calculus.  

References 
1. A. Bueno-Orovio, D. Kay, V. Grau, B. Rodriguez, K. Burrage, Fractional diffusion 

models of cardiac electrical propagation: role of structural heterogeneity in dispersion 
of repolarization, Tech. Rep. OCCAM 13/35, Oxford Centre for Collaborative Applied 
Mathematics, Oxford, UK, (2013). 

2. D. Cafagna, G. Grassi, Observer-based projective synchronization of fractional 
systems via a scalar signal: Application to hyperchaotic Rössler systems, Nonlinear 
Dyn. 68 (1-2), (2012), pp. 117-128. 

3. R. Caponetto, G. Maione, A. Pisano, M.M.R. Rapaic, ´ E. Usai, Analysis and shaping 
of the self-sustained oscillations in relay controlled fractional-order systems, Fract. 
Calculus Appl. Anal. 16 (1), (2013), pp. 93-108. 

4. R. Garra, Fractional-calculus model for temperature and pressure waves in 
fluid-saturated porous rocks, Phys. Rev. E 84 (2011) 036605. 

5. R. L. Magin, Fractional calculus in bioengineering, in: 2012 13th International 
Carpathian Control Conference, ICCC 2012, (2012).  

6. R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, 
Comput. Math. Appl. 59 (5), (2010), pp.1586-1593. 

7. J. Tenreiro Machado, P. Stefanescu, O. Tintareanu, D. Baleanu, Fractional calculus 
analysis of the cosmic microwave background, Romanian Rep. Phys. 65 (1), (2013), pp. 
316-323. 

8. J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, 
Commun. Nonlinear Sci. Numer. Simul. 16 (3), (2011), pp.1140-1153. 

9. C. -H. Yu, Differential properties of fractional functions, International Journal of 
Novel Research in Interdisciplinary Studies, Vol.7, No. 5, (2020), pp.1-14. 

10. C. -H. Yu, Fractional Clairaut’s differential equation and its application, International 
Journal of Computer Science and Information Technology Research, Vol. 8, Issue 4, 
(2020), pp. 46-49. 

11. C. -H. Yu, Separable fractional differential equations, International Journal of 
Mathematics and Physical Sciences Research, Vol. 8, Issue 2, (2020), pp. 30-34. 

6

E3S Web of Conferences 268, 01080 (2021) https://doi.org/10.1051/e3sconf/202126801080
VESEP2020



 

𝑌𝑌⊗2 + 2
Γ�5 4� � 𝑋𝑋

1 4� ⊗ 𝑌𝑌 − � 1
Γ�5 4� � 𝑋𝑋

1 4� �
⊗2

= 𝑐𝑐1 .             (32) 

Hence, we obtain the general solution of Eq. (29) 

𝑦𝑦⊗2 + 2
Γ�5 4� � 𝑥𝑥

1 4� ⊗ 𝑦𝑦 − � 1
Γ�5 4� � 𝑥𝑥

1 4� �
⊗2

− 6𝑦𝑦 − 2
Γ�5 4� � 𝑥𝑥

1 4� = 𝑐𝑐 ,        (33) 
where 𝑐𝑐 is a constant. 

5 Conclusions 
As mentioned above, we can obtain the solutions of three types of first order fractional 
differential equations studied in this paper by using product rule for fractional derivatives. 
In fact, the application of product rule is extensive, and can be used to easily solve many 
fractional differential equations. On the other hand, our results are generalizations of 
classical first order differential equations which can be transformed into separable variables. 
In the future, we will use the Jumarie’s modified R-L fractional derivatives and the new 
multiplication defined in this article to expand our research topics to the problems of 
applied mathematics and fractional calculus.  
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