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Abstract. In this paper, we deal with an optimal harvesting problem for a periodic predator-prey hybrid
system dependent on size-structure in a polluted environment. In other words, a size-dependent model in
an environment with a small toxicant content has been established. The well-posedness of state system is
proved by using the fixed point theorem. The necessary optimality conditions are derived by tangent-
normal cone technique in nonlinear functional analysis. The existence of a unique optimal harvesting
policy is verified via the Ekeland’s variational principle. The optimal harvesting problem has an optimal
harvesting policy, which has a Bang-Bang structure and provides a threshold for the optimal harvesting
problem. Using the optimization theories and methods in mathematics to control phenomena of life. The
objective function represents the total economic profit from the harvested population. Some theoretical
results obtained in this paper provide a scientific theoretical basis for the practical application of the model.
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1 Introduction
With the rapid development of the global economy,
many new technologies have been applied to industrial
and agricultural production activities. The invasion of
toxicants is very easy to happen, and environmental
pollution has become more and more serious. Bush fires
in Australia, SARS, Ebola virus, AIV, H1N1 influenza,
and COVID-19, etc., these phenomena are threatening
the ecological balance and causing serious harm to the
survival of human beings and other creatures. Therefore,
it is necessary to study the effects of toxicants on
biological populations. Hallam et al. proposed an idea of
using dynamics methods to study ecotoxicology in the
literature [1-3]. They established a toxicants-population
model and studied the persistence and extinction of a
population in a polluted environment. Since the 1980s,
people have conducted in-depth research on the topic of
ecotoxicology. Nowadays, there is a large number of
literature on ecotoxicology problems [4-6], but size-
structured factors are not considered in these models.

For many populations, the individual size determines
the life parameters of the individual to a large extent,
such as reproductive rate, mortality, metabolic capacity
and predation capacity, etc., thereby affecting the
dynamic behavior of the populations. In addition, the
individual size-structure can explain some phenomena
that other structures cannot explain, such as the self-
thinning of plants and the elastic growth of individuals.
Furthermore, the individual size has good operability,
such as easy measurement, convenient scientific
management of ecological resources, and easy access to
size-based statistical data. It is more convenient in
practical applications. This kind of models has achieved

remarkable results through theory, numerical calculation
and experimental methods, which can be found in the
literature [7-10]. Due to the influence of seasonal
changes and other factors, the living environment of the
populations often experience periodic changes. For the
research on the optimal harvest problems dependent on
individual size-structured models in a periodic
environment can be referred to [11-13], in which the
literature [11] discussed harvesting problem for
nonlinear size-dependent population model in periodic
environments. At present, only a few papers have
focused on the optimal control problems of population
models with size-structure and periodic effects in a
polluted environment. Inspired by the above, this paper
discusses the optimal harvesting problem of a periodic
predator-prey system dependent on size-structure in a
polluted environment.

The remaining part of this paper is as follows. The
problem is described and the main methods of proof are
given in the next section. The well-posedness is proved,
the optimality conditions for the harvesting problem are
derived, the existence of a unique optimal policy is
obtained and the problem is discussed in Sect. 3. Finally,
we give a short conclusion in the last section.

2 Methodology
We establish the following periodic predator-prey model
with size-structure in a polluted environment:
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(1)

where       RlRRlQ ,,0,,0 is the

maximal size, RT is the habitat evolution period.
Other parameters are defined as follows:

 ,ip s t : the density of ith population of size s at time
t .

 0ic t : the concentration of the toxicants in ith
population.
 tce : the concentration of the toxicants in the

environment.
The vital rates of ith populations    , ,i ig s s t and

 ,i s t : the growth rate of the individual size, mortality
and fertility, respectively.

 ,i s t : the interaction coefficient.
 tv : the exogenous toxicants input rate.

 iP t : total number of ith population.
The 1, , , , ,ik g m k g h are non-negative constants.
The  ,iu s t is the harvesting efforts, which belongs to

         HtsuRLQLvu iTT 

  

 ,0:,
2

,

    Qtshtv  ,,0 ,
where  is admissible control set, and    Ttsts  ,,  ,
a.e.  ,s t Q ,    Ttt  , a.e.  Tt ,0 . In this paper,
we consider the following optimal harvesting problem:

 
         1 2,

max , : , , , ,
u v

J u v u u s t u s t v v t


  , (2)

where

       
2

0 0
1

, , , , d d
T l

i i i
i

J u v w s t u s t p s t s t


 

   
2 2 2

30 0 0
1

1 1, d d d
2 2

T l T

i i
i

c u s t s t c v t t


          ,

represents the total economic profit from the harvested
population. The weight function  ,iw s t is the selling

price of an individual. The positive constant 1 2,c c and

3c are the cost factors of harvesting populations and the
cost factor of curbing environmental pollution,
respectively. The state  0, , ep c c is the solution of the

system (1) corresponding to  ,u v .
Throughout this paper, we assume that:

( 1A )        1 0, , 0 1, lim 0, 0i i i is lg C l g g s g s    ,

and  ' 0ig s  , a. e.  ls ,0 . There are constants
0

iVL such that for all  lss ,0, 21  :

    2121 xxLsgsg
iVii  .

( 2A )      Ttcstcs iii  0
0

0 ,,0  ,   tswi ,0
  wTtswi , .

( 3A )           1
0 0 0, 0, , 0 , ,

ii i loc i i ic t L l s c t s c t T       ,

   1

0
, d

l

i i i l s t s s       .    0

1 d
s

i
i

s
g




   .

( 4A )        10
2 0,,0 vtvvTLv .

( 5A ) hvmgkg  1, .

( 6A )          1 2 1 2
0 0 0 0, ,i i i i i is c t s c t L c t c t    ,   1

0, is c t

      2 1 2 0
0 0 0, ,0i i i i is c t L c t c t       .

( 7A )   ,0i if L Q f B   ,    , ,i if s t f s t T  , for

 ,s t Q .
Next, we will prove the existence and uniqueness of

non-negative solution of the toxicant-population model
by the fixed point theorem, deduct the optimality
conditions of the optimal harvesting problem by
employing tangent-normal cone techniques, and obtain
the existence of optimal harvesting policy by the
Ekeland's variational principle.

3 Experimental results and discussion

3.1 Well-posedness of the state system

In this section, we discuss the well-posedness of state
system (1), and first give the following definition.

Definition 3.1.1 The           1 2 10 20, , , , , , ep s t p s t c t c t c t is

a solution of state system (1), if it is absolutely
continuous along almost every characteristic curve

 it s     R [14] and satisfies:
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Theorem 3.1.2 Assuming ( 1A )-( 7A ) hold, then the
state system (1) has unique non-negative solution that
satisfies the following conditions:

(I)                 32
201021 ,,,,,, 

  RLQLtctctctsptsp Te ;
(II)      Rttctc e ,10,10 0 .

Proof Without a loss of generality, suppose   0, txui .
From definition 3.1.1, the solution of the state system (1)
can be written as

 ,ip s t

          1
00

exp ,i s

i i i i i ib t s c t s  
      

       1 1( 1) ,i
i i i j it s P t s          

  1 dis ig   

         1
00

exp ,i is s

i i i ic t s


  
       
         1 11 ,i

i i i j it s P t s          

        1 1d , dis i i i ig f t s          ,

 1,2, ii j s t    , (3)

      0 0 0 expi ic t c g m t  

      smgtssck
t
e dexp

0  , (4)

         1 1 1 20
0 exp d

t

e ec t c k P k P h     
          1 10 1 1 20 20

t
g c s P s g c s P s v s  

     1 1 1 2exp d d
s

t
k P k P h s     , (5)

where    0,i ib t p t , we obtain

     1 1 10 0,b t g p t

     1
1

1 10 10
, , d

t
s c t p s t s


 

      
1

1

1 10 1 10
,

t
s c t b t s


 

      1 1
1 1 10 10

, d d
s
f c t s s  

       
     1

0 0
1 10

d ,
t

L Q
b f       .

By Bellman’s lemma, we get that
       1

0 0
1 1 , exp

L Q
b t f T    .

We define a mapping:
XXF : ,

      0 1 0 5 0, , , , , , , ,e e eF p c c F p c c F p c c  ,

where
       1 0 1 2 0 2, , , , , , ,e eF p c c p s t F p c c p s t  ,

       3 0 10 4 0 20, , , , ,e eF p c c c t F p c c c t  ,

   5 0, , e eF p c c c t ,
and   XccpF e ,, 0 . We can see that

   1 00
, , , d

l

eF p c c s t s
   1

1

1 10

t
b t s


 

      1 1
1 1 10 10

, d d
s
f c t s s  

      
     11 10

d ,
t

L Q
b f    

         1 1
0 0

1 1 1, exp , :
L Q L Q

T f T f M        .

Similarly, we have

   2 00
, , , d

l

eF p c c s t s
      1

0 0 0 0
1 1 2exp 2 exp ,

L Q
T lM lM T f      

     1
0

1 2 2exp , :
L Q

lM f M    .

Next, we will prove that F is a contracting operator.
Let  11

0
11 ,, eccpx and  22

0
22 ,, eccpx be the solutions of

system (1), then we have

    
l

sxFxF
0

2
1

1
1 d

       1
1 1 1

1 10 1 1 10 0
, ,

t l
r c t r p r t r


   

      2 2
1 10 1 1 1, , d dr c t r p r t r r s  

        1
1 10 1 1

1 1 1 10 10 0
,

t s
M c t s   

      
     1 2

1 1 10 1, d dc t s s      

     1
1 10 0 1

1 2 10 0

t s
M P t r  

 
   

  2
2 1 d dP t r s   

        1
1 1 1 1 1

1 1 10 10 0
,

t s s
B c t s


  

        
     1 2

1 1 10 1, d d dc t s s       
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     1
1 1 1 0 1

2 10 0

t s s
B P t s


 

  
    

  2
2 1 d d dP t s s    

      1
10 1 2

1 1 1 10 0
, , d d

t l
p r t r p r t r r s


    
     1

10 2 1
1 1 10 10

t
M L l Bl L M L c t s   


    

    2 0 0 0 2
10 1 1dc t s s lM B l       

        1
1 1 1 2

2 1 2 10 0
, , d d

t s
p t r p t r s  

 
     

    1 2
3 1 10 0

, , d d
t l

M p r s p r s s   
   1 2

2 20 0
, , d d

t l
p r s p r s r s  
    1 2

10 100
d

t
c s c s s  , (6)

where  0 0 0 0 2
3 1max , ,M lM B l    

0 2
1 1M L l Bl L M L     .

Similarly, we have

   1 2
2 2F x F x

    1 2
4 2 20 0

, , d d
t l

M p r s p r s s   
    1 2

20 200
d

t
c s c s s  , (7)

where   0 0 0 2
4 1 1 2maxexp ,M lM M L l Bl L M L       .

   1 2
3 3F x F x

      1

0
exp d

t

ek c s s t g m s  
      2

0
exp d

t

ek c s s t g m s  
   1 1

5 0
d

t

e eM c s c s s  , (8)

Similarly,

   1 2
4 4F x F x

   1 1
6 0

d
t

e eM c s c s s  , (9)

where 5 6M M k  .

   1 2
5 5F x F x

       1 1
1 1 1 20

0 exp
t

ec k P k P h    
          1 1 1 1

1 10 1 1 20 20

t
g c s P s g c s P s v s  

     1 1
1 1 1 2exp d d

s

t
k P k P h s    

       2 2
1 1 1 20

0 exp d
t

ec k P k P h     
          2 2 2 2

1 10 1 1 20 20

t
g c s P s g c s P s v s  

     1 1
1 1 1 2exp d d

s

t
k P k P h s    

        1 1 1 1
1 10 1 20 20

t
g c s P s c s P s 

     1 1
1 1 2exp d

s

t
k P P   
        2 2 2 2

1 10 1 20 2g c s P s c s P s 

     2 2
1 1 2exp d d

s

t
k P P s   
        1 2 1 2

1 1 1 2 20
d

t
k P P P P       

       1 1
1 1 20

exp d
t s

t
v s k P P   

 

     1 1
1 1 2exp d d

s

t
k P P s     



          1 2 1 2
1 1 1 1 2 20

d
t

k g P s P s P s P s s    
        1 2 1 2

1 10 10 20 200
d

t
g M c s c s c s c s s   
          1 2 1 2

1 1 1 1 1 1 2 20 0
2 d d

t
g k M k v P s P s P s P s s


     

   
2

1 2
7 0 0

1

, , d d
t l

i i
i

M p r s p r s r s



 


 

 
2

1 2
0 100

1

d
t

i
i

c s c s



  


 , (10)

where  7 1 1 1 1 1 1 1max 2 ,M k g k v T k g MT g M    ,

 1 2max ,M M M .
We define an equivalent norm in space X by

 
 

     
2 2

0 000, 1 1

, , Ess sup , d
lt

e i i e
t T i i

p c c e p s t t c t c t
   

 
   

 
  ,

where 0 large enough. By (6)-(10), we get
   


 21 xFxF

            1 2 1 2 1 2
1 1 2 2 5 5, , ,F x F x F x F x F x F x


   

 
   

2
1 2

8 0 00, 1

Ess sup , , d
t lt

i i
t T i

M e p r s p r s r

 


 


 

       
2

1 2 1 2
0 0

1

di i e e
i
c s c s c s c s s




    




 
   

2
1 2

8 0 00, 1

Ess sup , , d
t lt s s

i i
t T i

M e e e p r s p r s r   

 

 
  


 

       
2

1 2 1 2
0 0

1

di i e e
i
c s c s c s c s s




    




 
 1 2

8 00,
Ess sup d

tt s

t T
M x x e e s 

 
  

1 28M x x
 

  ,

where  8 3 4 5 6 7max , , , ,M M M M M M . It obvious that
for any 8M  , then F is a contraction on the space of
 


,X and owns a unique fixed point. Namely,

 eccp ,, 0 is the solution of the state system (1).

Lemma 3.1.3 For any   ii vu , , the state system (1)
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exists a unique non-negative and bounded solution,
where   1, Ctspi  . Moreover, there exists 0iK ,
such that

      1

2 2
1 2 1 2 1 2

0 00, ; 0, 0, 0,
1 1

i i i i e eL T L l L T L T
i i

p p c c c c  

 

     

    1

2
1 2 1 2

1 0, ; 0, 0,
1

i i L T L l L T
i

K T u u v v 



 
    

 
 ,

     1 1 1

2 2
1 2 1 2 1 2

0 0 0, 0,
1 1

i i i i e eL Q L T L T
i i

p p c c c c
 

     

   1 1

2
1 2 1 2

2 0,
1

i i L Q L T
i

K T u u v v


 
    

 
 .

The proof process of lemma 3.1.3 is similar to that of
Theorem 3.1.2, which is omitted here.

3.2 Optimality conditions

In this section, we consider the adjoint system of (1) and
establish first-order necessary conditions for optimal
harvesting of (2).

Lemma 3.2.1 Let  0, , ep c c   be the solution of system

(1) corresponding to    vu , . For any

   
 vuT ,, 21  ,  1 2,u u u   ,  21111 ,  , such

that    
21,  vu for sufficiently small

0 , we obtain

      1 , , ,i i ip s t p s t z s t


  ,

      0 0 2
1

i i ic t c t z t




  ,

      5
1

e ec t c t z t


  ,

as 0 , where  0, , ep c c   is the solution of (1)

corresponding to    
21,  vu and

 1 2 3 4 5, , , ,z z z z z is the solution of the following system
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(11)

Theorem 3.2.2 Let   vu , be an optimal policy for
the optimal harvesting problem of (1)-(2). Then

 
   , ,

, , 1, 2i i i
i i

i

w s t q s t p
u s t L i

c




      
 

,

   5
3

3

q t
v t L

c
  

  
 

,

in which iL are given by

   
 

   
 

0, , 0,

, , , 0 , , 1, 2,3

, , ,
j j

j j

s t

L s t s t s t H j

H s t H



  



 
   
 

where  1 2 3 4 5, , , ,q q q q q is the solution of the following
adjoint system (12):
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c
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   1 2

, 0,

, , ,

0, 1, 2.
i i

i i

l t

q s t q s t T

q T q T i 






































 
  


  

(12)

Proof For any given element of the tangent cone
   

 vuT ,, 21  , we have    
21,  vu

for any sufficiently small 0 . Then, due to the
optimality of   vu , , it is derived that

     


 
2

1
0 0

1 dd,,
i

T l
iiii tstsputsw 

    tvctsuc
T

i

T l
iii d

2
1dd

2
1

0
23

2

1
0 0

1    



 

     
2

0 0
1

, , , d d
T l

i i i
i

w s t u s t p s t s t 



 

      ttvctstsuc
T

i

T l
ii d

2
1dd,

2
1

0

2
3

2

1
0 0

2

  



  .

By Lemma 3.2.1, it follows that

     
2

0 0
1

, , , d d
T l

i i i
i

w s t u s t z s t s t


 

         


 
2

1
0 0

1 dd,,,,
i

T l
iiiii tststsuctsptsw 

    0d
0

23    tttvc
T

 , (13)

Multiplying the first five equations in (11) by
     1 2 5, , , ,q s t q t q t respectively, then integrating on

Q and  T,0 , combining (13), we get

     
2

0 0
1

, , , d d
T l

i i i
i

w s t u s t z s t s t


 

      tstsqtspts
i

T l
iii dd,,,

2

1
0 0

1 


 

    ttqt
T

d
0

52  . (14)

Substituting (14) into (13) gives that

  
2

10 0
1

d d
T l

i i i i i i
i

w q p c u v s t 



  

 3 5 20
d 0

T
c v q v t    ,

for every    
 vuT ,, 21  , thus

    3 5, ,i i i iw q p c u c v q N u v    
     , where

 
 vuN , is normal cone of  at   vu , .

Lemma 3.2.3 For any   2,1,,  ivu ii , The adjoint
system (12) exists a unique bounded solution, where

2Cqi  . Moreover, there exists 03 K , such that

     

2 4
1 2 1 2 1 2

5 50, 0,
1 3

i i L Q L T L T
i

q q q c q q 


  

 

     

   

2
1 2 1 2

3 0,
1

i i L Q L T
i

K T u u v v 



 
    

 
 .

3.3 Existence of optimal policy

In this section, the existence of optimal policy will be
established. First, define the embedding mapping  vuJ ,~

in    
21 1 0,L Q L T    as follows

 
   

 
, , , ,

,
, , .

J u v u v
J u v

u v

 
 



Lemma 3.3.1 The functional  vuJ ,~ is upper semi-

continuous in    
21 1 0,L Q L T    .

Proof Suppose    vuvu nn ,,  as n ,  nnn ccp 00 ,,
and  eccp ,, 0 be solutions of (1) corresponding to

 nn vu , and  vu, , respectively. According to the Riesz
theorem, there exists a subsequence (still denoted by
 nn vu , ), it follows that

    tsutsu n ,, 22
 , a.e.   Qts , , as n . (15)

    tvtvn 22
 , a.e.  Tt ,0 , as n . (16)

From (15) and (16), using Lebesgue dominated
convergence theorem implies that
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2 2

0 0 0 0
lim , d d , d d

T l T ln
i in
u s t s t u s t s t


          ,

     ttvttv
TT n

n
ddlim

0

2

0

2

 


.

By Lemma 3.1.3, we have

     
0 0

, , , d d
T l n n

i i iw s t u s t p s t s t 
     

0 0
, , , d d

T l

i i iw s t u s t p s t s t 
       

0 0
, , , , d d

T l n n
i i i i
w s t p s t u s t u s t s t  

       
0 0

, , , , d d
T l n

i i i iw s t u s t p s t p s t s t  
   1 1

n n
i i L Q L Q

Mw u u wH p p   

      1 1 12 0,

n n n
i i i iL Q L Q L T

Mw u u wHK T u u v v      ,

we get that

     
0 0

lim , , , d d
T l n n

i i in
w s t u s t p s t s t

  
     

0 0
, , , d d

T l

i i iw s t u s t p s t s t   .

Therefore, we have proved that

 
   vuJvuJ nn

vun nn
,~,~suplim

,



.

Theorem 3.3.2 If  1 1
1 1 2 1 1 3 2 3 1c T wK C K CK c KT       ,

the optimal harvesting problem (1) and (2) exist a unique
optimal policy.

Proof According to Lemma 3.3.1 and Ekeland’s
variational principle, for each 0 , there is a
   vu , such that

 
 

   


vuJvuJ
vu

,~sup,~
,

, (17)

 
 

  vuJvuJ
vu

,~sup,~
, 



   1 1

2

0,
1

i i L Q L T
i

u u v v 


 
     

  
 . (18)

By Theorem 3.2.2, we have
    , 1, 2i i i i i i iw q p c u N u i          ,

 5 3 3q c v N v       .

Consequently

   1 1 1 1
1

1 1

, ,
w q p

u v L
c c

  
    

   
   

 2 2 2 5 32
2 3

2 2 3 3

,
w q p q

L L
c c c c

        
         
,

where  1 2, L Q    ,  3 0,L T  with 1 1  ,

2 1  , 3 1  ,

First, we prove the uniqueness of optimal harvesting
by the contraction mapping principle.

     1 1 1 2 2 2 5
1 2 3

1 2 3

, , ,
w q p w q p q

F u v L L L
c c c

       
             

.

Therefore, we have
   2211 ,, vuFvuF 

   1 1 1 2 2
1 1 1 1 2 1 1c w q p w q p   

   1 1 1 2 2 1 1 2
2 2 2 2 2 2 2 3 5 5c w q p w q p c q q       .

Combining Lemma 3.1.3 with Lemma 3.2.3, we get that
   2211 ,, vuFvuF 

   1 1 1
1 2 1 2 1 1 3 3 3T c c wK C K C K c K T        

   

2
1 2 1 2

0,
1

i i L TL Q
i
u u v v 



 
    
 
 .

If    1 1 1
1 2 1 2 1 1 3 3 3 1T c c wK C K C K c K T         , the

mapping F is a contraction and has a unique fixed point
  vu , . Then the Theorem 3.2.2 implies that any

optimal control   vu , , if exists must be a fixed point of
the mapping F .

Next we will show that   vu , is the optimal
policy. Since

    vuvuF ,, 

   1 1 1 2 2 2 5
1 2 3

1 2 3

, ,
w q p w q p q

L L L
c c c

                          

   1 1 1 2 2 21 2
1 2

1 1 2 2

, ,
w q p w q p

L L
c c c c

   
      

      
       

5 3
3

3 3

q
L

c c

   
      

1 1 1
1 1 2 2 3 3c c c           

 1 1 1
1 2 3c c c      .

and    vuvuF ,,  , it follows that

    vuvu ,, 

        vuvuFvuFvuF ,,,, 

   1 1 1
1 2 1 2 1 1 3 3 3T c c wK C K C K c K T        

     
2

1 1 1
1 2 30,

1
i i L Q L T

i
u u v v c c c   

  



 
       
 


    1 1 1
3 4 1 2 3max ,K K T c c c    

     
2

1 1 1
1 2 30,

1
i i L Q L T

i
u u v v c c c   

  



 
       
 
 ,

that is

   

2

0,
1

i i L Q L T
i
u u v v 

 



  

 
    

1 1 1
1 2 3

1 1 1
3 4 1 2 31 max ,

c c c

K K T c c c

   

  

 


  
.

where 431121 KKCKCKw  .

Therefore    vuvu ,,  as 0 . From Lemma
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3.3.1 and inequality (17) it follows that
 

 
 vuJvuJ

vu
,~sup,~

, 
 ,

which implies that   vu , is the optimal policy.

4 Conclusion
In this paper, an optimal development model of a
periodic population system dependent on sized-structure
in a polluted environment is established and analyzed. If
all the parameters in the optimal control problem (1) and
(2) are periodic functions related to time, then with the
increase of time, the total population resources will show
periodic changes. From the Theorem 3.2.2 and 3.3.2, the
optimal harvesting problem (1) and (2) have at least one
optimal harvesting policy, and the Theorem 3.2.2 shows
that the optimal harvesting policy has a Bang-Bang
structure. The optimal harvesting policy in Theorem
3.2.2 provides a threshold condition for optimal
harvesting problems (1) and (2):

  3 5, , 1, 2i i i iw q p c u c v q i       .

If   5 30, 0i i i iw q p c u q c v       , that is, when the
economic value of the population is relatively low, then
the optimal harvesting policy is equal to its minimum
value 0. If   5 30, 0i i i iw q p c u q c v       , that is,
when the economic value of the population is relatively
high, then the optimal harvesting policy is equal to its
maximum value , 1, 2,3jH j  . This result has obvious
practical significance.

In practical applications, the parameter values in
models (1) and (2) are fitted by observation data. Then
combined with (2), (3) and (12) to calculate the optimal
harvest policy and the optimal population density.
Furthermore, the optimal index s can be obtained
through numerical calculation, which provides a
theoretical basis for the development and utilization of
population resources.
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