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Abstract. Reducing the radiation exposure in computed tomography (CT) is always a significant research
topic in radiology. Image reconstruction from few-view projection is a reasonable and effective way to
decrease the number of rays to lower the radiation exposure. But how to maintain high image
reconstruction quality while reducing radiation exposure is a major challenge. To solve this problem,
several researchers are absorbed in l0 or l1 regularization based optimization models to deal with it.
However, the solution of l1 regularization based optimization model is not sparser than that of l1/2 or l0
regularization, and solving the l0 regularization is more difficult than solving the l1/2 regularization. In this
paper, we develop l1/2 regularization for wavelet frames based image reconstruction model to research the
few-view problem. First, the existence of the solution of the corresponding model is demonstrated. Second,
an alternate direction method (ADM) is utilized to separate the original problem into two subproblems,
where the former subproblem about the image is solved using the idea of the proximal mapping, the
simultaneous algebraic reconstruction technique (SART) and the projection and contraction (PC)
algorithm, and the later subproblem about the wavelet coefficients is solved using the half thresholding
(HT) algorithm. Furthermore, the convergence analysis of our method is given by the simulated
implementions. Simulated and real experiments confirm the effectiveness of our method.

* Corresponding author: linglizhang@cqwu.edu.cn

1 Introduction
Nowadays, X-ray computed tomography (CT) has been
extensively applied in medical diagnosis, biomedical
research, non-destructive testing and so forth [1].
However, the inherent radiation dose of CT may
induce cancer and other diseases in medical diagnosis
[2,3]. The reduction of X-ray radiation is a more and
more urgent issue. Generally, there are two strategies
to reduce radiation dose: one is to lower the tube
current or voltage values in data acquisition protocols,
and the other is to decrease the number of the X-ray
attenuation measurements through an object to be
reconstructed. The former situation often introduces
excessive noise into the projection data [4,5]. The latter
situation necessarily results in insufficient projection
data, which leads to few-view reconstruction [8-11],
limited-angle reconstruction [8,13,14], etc.. In this
paper, we focus on the few-view reconstruction within
short-scan. Iconically, The sketch map of the scanning
geometry for the few-view reconstruction problem
within short-scan can be presented as Figure 1, where

the red point denotes the sampled X-ray source.

Figure 1. The sketch map of the scanning geometry for the
few-view reconstruction within short-scan.

Restricted by the noise and the number of the
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projection data, the image reconstruction problem is
usually an ill-posed inverse problem from a
mathematical point of view [1] formulated as:

.beAx  (1)

where x denotes the discrete attenuation coefficients of
the object to be reconstructed (that is the image); A is
the system matrix; e represents the noise with level
(that is 

2
e ) and b is the measurement of the

calibrated and log-transformed projection data.
Generally, the solution of (1) can be found by
minimizing the following optimization problem:

.min 2

Dx
bAx 

(2)

where Dxxx T
D
2

and D is a positive definite

diagonal matrix. T denotes the transposition.
When the projection data is complete, the

commercial Filtered Back-Projection (FBP) [6] method
is a common choice for two-dimensional
reconstruction. However, if the projection data is
incomplete or contains high noise, the reconstructed
images using commercial FBP method will suffer from
artifacts and noise. Fortunately, the iterative algorithms
(such as the simultaneous algebraic reconstruction
technique (SART) [6,7]) may perform better than FBP
method. SART can suppress the noise well when the
projection data with the noise is complete. However,
this technique will lead to obvious artifacts in
reconstructed images when projection data is
incomplete. Several attempts have been carried out to
settle such problem and overcome its shortcomings [4,
5,8,11,15], which are often considered as optimization
algorithms.

However, the problem (2) is an ill-posed problem
and its solution will be instable when the projection
data is incomplete. In order to surmount the instability
of an ill-posed problem, numerous regularization
methods have been researched. The thought of
compressed sensing (CS) has been widely applied in
CT image processing [16-19]. Typically, motivated by
the advantage of the total variation (TV) in image
denoising [20], TV based image reconstruction model
as shown in (3) was proposed to solve few-view and
limited-angle problems [8].

.0,..,)(min
1

 xbAxtsx
x (3)

where the discrete ),()( 1,,,1,,   jijijijiji xxxxx

and jix , is the intensity value at the position (i, j).
Subsequently, adaptive steepest descent projection onto
convex sets (ASD-POCS) was proposed to obtain
relatively good image with suppressing streak artifacts
[9], but it did not work for slope artifacts well.
Derivative algorithms of TV [12-14] were put forward
to further improve the slope artifacts for limited-angle
reconstruction, however, the edge of an object was
more or less contortive. Recently, )10(  plp

regularization based image reconstruction optimization
models are springing up [19,21,22], for example,

)10(  plp based TV image reconstruction model

was developed [19] as follows:

}.)({min 2

20
bAxx p

px





(4)

where pp

i ip
xx /1)( . There were several methods

for solving lp based optimization problems such as the
reweighted l1 norm method [23] and the thresholding
method [24-27]. Although these TV based algorithms
are successful in a large number of situations, the
power of them are still limited for preserving gradually
varied edges.

In order to preserve the detailed information of an
image, some other forms of sparsifying transforms
have been developed, such as wavelet frames [28-31],
Haar transform [32], S-transform [33], etc.. The core of
wavelet frames is on account of the sparsity of some
features in an object to be reconstructed. Sparse
transform takes some prior knowledge of the object to
be reconstructed into account. To measure the
transformed result is the second important aspect. As it
is known that l0 based prior can obtain a sparser
representation than l1 based prior [20]. However, l0
based image reconstruction is often an NP-hard (non-
deterministic polynomial-time hard) problem and the
objective function will be non-convex and non-
continuous [34]. In the reference [24], the authors
proposed an l1/2 regularizer which has many promising
properties such as unbiasedness, sparsity and oracle
properties and it can be considered as a representative
of lp (0 < p < 1) regularizers. Nevertheless, l1/2 based
optimization problem is a non-convex problem, and
most algorithms for solving that can only provide an
approximate local minimizer [35]. Some authors
investigated the existence of non-smooth and non-
convex optimization problems [36], and the other
authors introduced a proximal alternating linearized
minimization (PALM) algorithm to solve such
problems [37], where the sequence generated by
PALM can be convergent to a stationary point under
some conditions.

In this study, we mainly concentrate on l1/2
regularization for wavelet frames based optimization
problem to settle the few-view reconstruction within
short-scan. To settle this problem, we utilize an
alternate direction method (ADM) [37,39,42] to
separate the original problem into two subproblems. In
the first problem, considering the storage of the system
matrix A, we utilize the SART [6] to obtain a proximal
point and then use the projection and contraction (PC)
[43,44] algorithm to settle the proximal problem.
Ultimately, we use the half thresholding (HT) [27]
algorithm to settle the second subproblem.

The main contents in this paper are shown below:
1. We use the l1/2 quasi-norm of the wavelet

coefficients for the image to develop the image
optimization model. After that we give the existence of
a solution for the presented model.

2
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2. We utilize the ADM to separate the l1/2 quasi-
norm regularization term and l2 norm fidelity term into
two subproblems. Then through the idea of the
proximal mapping, we utilize SART and PC algorithm
to solve the first subproblem, and then use HT
algorithm to solve the second subproblem. In addition,
we analyze the convergence of special situation of our
method for the presented model.

3. To assess the effectiveness of our method,
simulated and real experiments are implemented.

This paper is organized as follows. In section 2, we
present the corresponding definitions and the
fundamental model and then give the existence of the
model’s solution, and finally we give solving process
of our method. In section 3, we represent the
convergence analysis of our method, and the simulated
and real experiments are given to demonstrate the
effectiveness and accuracy of our method. Finally, the
conclusions and perspectives are presented in section 4.

2 Existence of a Solution
Whether an optimization model has a global solution or
not is a key issue. In this section, we first give some
definitions and then develop an l1/2 regularization for
wavelet frames based image reconstruction model for
the few-view CT reconstruction problem within short-
scan. In addition, we give the existence of a solution
for the presented model.

2.1 Definitions

Some definitions [40] are prepared for the existence of
the model’s solution in this paper.

The function }{:  RRG m is lower semi-
continuous (lsc) at x if )(inflim)( yGxG

xy
 , and lower

semi-continuous on Rm if this holds for every x∈Rm.
The level set of G from Rm → R can be defined as:

}.)(|{:),( axGRxaGlev m  (5)

The asymptotic function G∞ for any proper function
}{:  RRG m can given by

).(1infliminf:)(
, nn

n
ntyy

ytG
t

yG
nn   (6)

The kernel of G can be given as:

}.0)(|{:ker   xGRxG m (7)

Let }{:  RRG m be an lsc and proper
function. Then G is said asymptotically level stable (als)
if for each ρ > 0, each bounded sequence of reals {λn},
and each sequence {xn}∈Rn satisfying

,ker,),,( *

2
2  Gx

x
xxGlevx
n

n
nnn 

there exists n0 such that xn-ρx∗ ∈ lev(G, λn), ∀n ≥ n0.

Gβ is coercive if Gβ(x) → +∞ as 
2nx , for

each β > 0.

2.2 Model

Before presenting our model in this paper, we consider
the following general problem:

).(min xG
Xx

(8)

where G denotes a real and extended functional on a
real space X. It is unnecessary that G is convex or
smooth. The problem (8) has several contributions in
preferences [36,38]. The authors considered that the
existence of a solution to problem (8) can be obtained
by utilizing a sequence of the problems in which β > 0
and it tends to 0:

}.
2

)(:)({min 2

2
xxGxG

Xx


 


(9)

The purpose of the term 2

22
x is to guarantee the

existence of a solution to the problem (8) whether G is
coercive or not.

In this paper, we mainly concentrate on the image
optimization problem. Especially, we put emphasis on
the l1/2 quasi-norm of the wavelet frame coefficients
since the piecewise smooth function (such as an image)
can be sparsely represented using tight wavelet frame

transform. That is 2/1

2/1

2

2
1:)( WxbAxxG

D
 and X

= Ω = {x|x = (x1, x2, . . . , xm)T ∈ Rm, xi ≥ 0, i = 1,
2, . . . , m} which can be counted as mR . Then, the
presented model can be expressed as

}.
2
1{min 2/1

2/1

2 WxbAx
Dx




(10)

where x is the image vector comprised of pixel
coefficients; lRA : is a bounded linear operator;

lRb  is a projection vector; D denotes the positive
definite diagonal matrix; W : Rm → Rq is a multilevel
wavelet tight framelets transform operator; λ is a
parameter balancing the fidelity term and
regularization term;

2/1
 denotes the l1/2 quasi-norm,

i.e., .)||( 2
1

2/1
2/1  


m

i ixx The piece constant linear

B-spline framelets transform W which can be
reconstructed by reference [31] is utilized in this paper.

2.3 Existence

A family of problems Gβ (β → 0+) to approximate the
problem (10) are adopted to accomplish the existence
of a solution. First, we need a corollary to accomplish
the existence of a solution for the presented model.
Lemma 2.1. (Corollary 3.4.2 of [40]) Let G: Ω⊆Rm

→[0, +∞] be a function and {γn} be a real bounded

3
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sequence satisfying:
(i) Gβ is coercive;

(ii) G is als, )(
2

  nasx
x
x
n

n strongly in Ω,

where xn ∈ lev(G, γn) and 
2nx .

Then, the problem (8) admits a global solution.

Remark 1. Lemma 2.1 implies that there exists a
subsequence extracted from Gβ (β → 0+) which is
convergent to a global solution.

To prove the existence of (10), we should validate
the conditions of Lemma 2.1 and consider the problem
as follows:

).0}(
22

1{minarg 2

2

2/1

2/1

2 


  xWxbAx

D
x

(11)

For simplicity, we let

,
2
1:)( 2/1

2/1

2 WxbAxxG
D

 (12)

.
2

)(:)( 2

2
xxGxG 

  (13)

Theorem 2.2. (The existence of the presented model):
Let G and Gβ be defined as (12) and (13), respectively.

lm RRA : is a bounded linear operator. W:Rm

→ Rq is a bounded linear operator and WTW = I. Then,
the problem (10) admits a global solution.
Proof. First of all, it is clear that Gβ is coercive since
Gβ(x) → +∞ as 

2nx for each β > 0.

Secondly, consider yn, y*∈Ω ⊆Rm and yn→ y* (as
n →+∞). Since W is a bounded linear operator, it
follows that Wyn→Wy∗ (as n→+∞). Thus,

2/1

2/1

*2/1

2/1
WyWy n  (as n→+∞). This implies that the

l1/2 term of G is lsc. Thus G is a proper and lsc function.
In addition, since 

2nx and xn ∈lev(G, λn),

G(xn) is bounded. According to the definition of

G∞(x*), let
2n

n
n x

xy  and .
2nn xt  It immediately

obtains that G∞(x*) ≥ 0 and

.0)(inflim)(1inflim)(
22

2
2







n

n
n

n

n
n

n
n x

xG
x
xxG

x
xG

Thus G∞(x*) and x*∈kerG∞.

Furthermore, since *

2

x
x
x
k

k  (as k → +∞), it

follows that 2/1

2/1

*

2/1

2/12

)()( xxW
x
xxW n
k

k
n   .

Let n = k and ρ∈[0,
2kx ], we have

.)1()( 2/1

2/1

2/1

2/12

2/1

2/12
kk

kk

k
n WxWx

xx
xxW 



For ∀  > 0, there exists n0 > 0, when n = k > n0, it
obtains that

.)()( 2/1

2/1

2/1

2/12

2/1

2/1
  

k
k

k
nn Wx

x
xxWxxW

That is G(xn-ρx∗ ) ≤ G(xn), for ρ∈[0,
2nx ] and

n > n0. And thus xn-ρx*∈lev(G, λn).
According to lemma 2.1, the problem (10) admits a

global solution.

2.4 Solving Process

According to remark 1, we can solve the problem (11)
to obtain the solution of the problem(10). In this
section, numerical implementation of the problem (11)
is presented. The alternating direction method (ADM)
is utilized to deal with this problem. Considering the
storage of the system matrix A, we will incorporate the
SART with the ADM, and then use projection
contraction (PC) algorithm to solve the constraint
problem. For the l1/2 quasi-norm, we will use the half
thresholding (HT) algorithm. we let (xi,j) denote a
discretized image on a rectangular grid m1×m2, i = 1,
2, . . . , m1, j = 1, 2, . . . , m2, and (bi,j) denote a
discretized image space of the function A on a
rectangular grid l1 × l2, i = 1, 2, . . . , l1, j = 1, 2, . . . , l2.
Where l1 is the number of the detector bins and l2 is the
number of the projection angle. The projection function
A can be defined by the basis functions which are
given by the seventh formula in reference [7]. Then,
(xi,j) and (bi,j) are rearranged into column vectors

mRx  and ,lRb  respectively. The piecewise
constant B-spline framelets can be reconstructed by
reference [31], and the associated fifilters are as
follows

].1,2,1[
4
1],1,0,1[

4
2],1,2,1[

4
1

210  hhh

The key to dealing with the presented model is to
de-couple the D-weighted l2 and l1/2 portions of the
model. It is difficult to deal with the problem directly.
Fortunately, ADM [37] is widely adopted to separate
the original problem (11) into two sub-problems. The
problem (11) can be converted into:

...},
22

1{minarg 2

2

2/1

2/1

2

,
WxtsxbAx

D
x







(14)

Using the augmented lagrangian method, it implies
that

}.
222

1{minarg 2

2

2

2

2/1

2/1

2

,,
xuWxbAx

D
ux







(15)

The ADM minimizes the problem (15) by
iteratively minimizing x and α alternately. Its (n + 1)th
process can be expressed as follows:

},
222

1{minarg:1 2

2

2

2

2 xuWxbAxstep nn
D

x






(16)

},
2

{minarg:2
2

2

12/1

2/1
nn

x
uWxstep  


 (17)

).(:3 111   nnnn Wxuustep  (18)
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For convenience, we denote:

;
2

:),,(,
2
1:)( 2

2

2 uWxuxhbAxxf
D

  (19)

.
22

:),,(,:)( 2

2

2

2,
2/1

2/1
xuWxuxgv    (20)

Although the problem (16) has a closed form
solution, the system matrix A is difficult to store in
memory considering the practical CT projection. To
solve the step 1, in this paper, we utilize SART to get a
proximal point by minimizing the objective function

2

2
1

D
bAx  , and the proximal point can be expressed as:

),(:ˆ 1 nnn xfVxx  


 (21)

where  / denotes a relaxation parameter in (0,2);
V is the diagonal matrix with diagonal non-zero
element ;,...,2,1,

1 , mjal

i ji  

1V is the inverse

transform of V . D is the inverse matrix of the
diagonal matrix with non-zero diagonal element

.,...,2,1,
1 , liam

j ji  
Then, the problem (16) can be

converted into the following form:

)},,,(ˆ
2
{minarg ,

2

2

1 nnn

x

n uxgxxx 




 (22)

where τ is a balancing parameter. Note that there are
three parameters to be tuned in (22). In fact, (22)
expresses the proximal forward-backward scheme [37].
Using the proximal mapping, it follows that

)}.,,(ˆ
2
{minarg:)ˆ(Pr ,

2

2
, nnn

x

ng uxgxxxox 


 


(23)

Then it can obtain

).ˆ(Pr ,1 ngn xoxx 
 (24)

Afterwards, the PC algorithm [43, 44] is utilized to
solve (24). The solution process of (16) includes two
steps as follows:
1. Obtain a proximal point nx̂ using the SART;
2. Optimize (24) using PC algorithm to obtain 1nx .
That can be expressed as ).ˆ(1 nn xPCx 

 

Denote ).,,(ˆ
2

:)( ,

2

2

nnn uxgxxxF 


The implementation process of PC algorithm [43,44] is
as following:

Table 1. The pseudo-code of PC algorithm

Implementation steps of the PC algorithm
Step 1. Initialize  0

0 ,9.1),1,0(,1 xt  and 0k

Step 2. )],([~ k
k

kk xFtxPCx  

,~
)~()(

2

2
kk

kk
k

k xx

xFxFt
r






While },1,1min{
3
2:,

k
kkk r
ttr 

)],([~ k
k

kk xFxPCx   

,~
)~()(

2

2
kk

kk
k

k xx

xFxFt
r






end (While)
)],~()([)~()~,( kk

k
kkkk xFxFtxxxxd 

,
)~,(

)~,()~(
2

2

kk

kkTkk

k
xxd

xxdxxe 


).~,(1 kk
k

kk xxdexx 

If 4.0kr then ,5.1: kk tt  end (if)

Step 3. kk tt  :1 and ,1:  kk go back to Step 2.

To solve the problem (17), we rewrite it as

}.
2

{minarg
2

2

12/1

2/1
1 nnn uWx   



(25)

The solution of the problem (25) has a closed form and
it can be effectively settled using the half thresholding
(HT) algorithm [27] as follows.














.)))(
3
2

3
2cos(1(

3
2

),~(0
)(

~

~
1

otherwiseaa

pif
HT

n
i

n
i

n
i

n
i

n
i









(26)

Where 3/2
3

1 )~(
4
54)~(,2~,)( 


   puWxa n

ii
nn

i

and ).)
3

(
8

~
arccos()( 2/3

~


a
a 

The step 3 is to update the lagrangian multiplier.
The above process including three steps can be

regarded as SART-PC-HT method (our method). We
denote Nmax the maximum number of the iteration,
and is the relative error between 1nx and nx . The
pseudo-code of SART-PC-HT method can be
described as shown in Table 2.

Table 2. The pseudo-code of SART-PC-HT method

Implementation steps of the SART-PC-HT reconstruction
method

Step 1. Initialize:
Given 1,,,0,1,0,, 11111

0   uWxx
.1 n

While ( 0  and maxNn  )
Step 2. SART-PC update:

(1) SART update: )(ˆ 1 nnn xfVxx  
(2) PC update: )ˆ(1 nn xPCx 

 
Step 3. HT update:

)( 1
~

1 nnn uWxHT  


Step 4. Lagrangian Multiplier update:
)(: 111   nnnn Wxuu 
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2

1
2

1



 


n

nn

x

xx


1:,*9.0:1  nnnn 
end (While)

Output 1nx

3 Simulated and Real Experiments
In this section, simulated and real experiments are
implemented to verify the effectiveness of our method.
We utilize the simulated experiments with ten different
levels of Guassian noise to do the quantitative statistics
interpretations which include RMSE and PSNR [41] as
follows:

,))()((1
1

2



m

i
r ixix

m
RMSE (27)

.log10 2

2

10 RMSE
x

PSNR r  (28)

where x denotes the reconstructed image, xr is the
reference image and m is the total number of the image
pixels.

Then, we use the real experiments to conform the
effectiveness of our method, compared with the
commercial FBP method [6]. In the experiments, the
parameters of our method are chose by trial and error
for the best reconstructed image quality. All the
experiments are implemented on 2.90 GHz intel(R)
Pentium(R) G2020 CPU processor with 4G memory
and coded.

3.1 Simulated and Real Experiments

We test and verify the effectiveness of our method for
few-view reconstruction within short-scan using a
digital NURBS based cardiac torso (NCAT) phantom
[45]. The simulated projection data are generated by
projecting a 256×256 discretized NCAT phantom with
adding ten different levels of Gaussian noise, where all
the mean value of Gaussian noise are zero, and their
standard deviations are 0.1%, 0.2%,..., 1% of the
current projection values (cpv), respectively. The
geometry scanning parameters for CT imaging system
are listed in Table 3. The number of projection views,
the parameters of our method and the corresponding
statistical analysis RMSE and PSNR are listed in Table
2. The stopping criterion is reaching the maximum
iteration number 100max N for ten different levels of
Gaussian noise. In PC algorithm, maximum iteration
number is 2000 and stopping criterion is 5101  ,
and adding a stopping criterion is 6

0 101  to our
method.

As shown in Table 4, with the decrease of the
standard deviation and the increase of the projection
views, RMSE is decreasing and PSNR is increasing.
Meanwhile, the main parameters of our method are

chose differently with diverse standard deviation.
Figure 2 demonstrates some of the reconstructed

results from ten different levels of Gaussian noise. As
shown in Figure1, (a) is an original image for NCAT,
and the rest of them are reconstructed using our
method from different projection views by adding
Gaussian noise with standard deviation 0.3%cpv,
0.5%cpv, 0.8%cpv and 1%cpv, respectively. From the
enlarged images in Figure 2, with the decrease of the
standard deviation and the increase of the projection
views, the noises are restrained effectively and details
are maintained well.

With the analysis of Figure 3 and Figure 4, the
RMSE of the reconstructed NCAT phantoms is
gradually decreasing and their PSNR are increasing
with the standard deviation decreasing and the
projection views increasing. That is, the smaller
standard deviation and more complete projection views
will lead the sequence {xn} to converge to a stationary
point which is very close to a global point. Meanwhile,
the bigger standard deviation and fewer projection
views will make the sequence {xn} converge to a
stationary point early, but the reconstructed result is
not good for the details.

Table 3. Geometry scanning parameters of NCAT for
simulated CT imaging system

The distance from X-ray source to rotation center 900.0mm

The distance from detector to rotation center 400.0mm

The angle between two adjacent projection
views(interval angle) 0.66670

The angle between two adjacent rays 0.00110

The number of detector units 256

The diameter of field of view 255.0mm

Pixel size 1.0 ×1.0mm2

Image size 256 × 256

Table 4. Quantitatively assess the image reconstruction
quality of NCAT in the 100th iteration

Projection
views

Standard
deviation   RMSE PSNR

272p-data

0.3%cpv 0.00063 0.0090 0.0090 40.9608

0.5%cpv 0.0009 0.0120 0.0128 37.8307

0.8%cpv 0.0045 0.0220 0.0225 32.9697

1%cpv 0.0070 0.0280 0.0294 30.6218

92p-data

0.3%cpv 0.00063 0.0090 0.0109 39.2420

0.5%cpv 0.0009 0.0120 0.0148 36.5669

0.8%cpv 0.0045 0.0220 0.0266 31.5029

1%cpv 0.0070 0.0280 0.0345 29.2497

56p-data

0.3%cpv 0.00063 0.0090 0.0132 32.9580

0.5%cpv 0.0009 0.0120 0.0169 32.2713

0.8%cpv 0.0045 0.0220 0.0318 29.8762

1%cpv 0.0070 0.0280 0.0401 28.6028
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Figure 2. (a) is a reference image for NCAT. (b1)-(d4) are
reconstructed images using our method from 272, 92 and 56
projection views (denote by 272p-data, 92p-data and 56p-
data) by adding Gaussian noise with standard deviation
0.3%cpv, 0.5%cpv, 0.8%cpv and 1%cpv in 100th iteration,
respectively. The lower left corner and upper right corner
images are the enlarged images of the red rectangle boxes.
The angular scope is [0, 181o ]. The display window is [0, 1]
cm-1.

Figure 3. The RMSE surfaces for NCAT from upper layer to
lower layer demonstrate the reconstructed images from 56
projection views by adding Gaussian noise with standard
deviation 0.1%cpv, 0.2%cpv,...,1%cpv, respectively.

Figure 4. The PSNR surfaces for NCAT from lower layer to
upper layer demonstrate the reconstructed images from 56
projection views by adding Gaussian noise with standard
deviation 0.1%cpv, 0.2%cpv,...,1%cpv, respectively.

3.2 Reconstruction from Real Walnut Data

To further confirm the effectiveness and accuracy of
our method for few-view reconstruction within short-
scan, we use the real Walnut projection data which can
be well known in reference [46]. Some details of the
Walnut are difficult to reconstruct since its projection
data contains some noises. In order to highlight our
method’s effectiveness to few-view reconstruction, we
adopt the different projection views in [0,180o],
compared with commercial FBP method.

The size of Walnut image to be reconstructed is
656×656. The real CT imaging system can refer to [46].
In the experiments, the stopping criterion is reaching
Nmax = 100, and the main parameters of our method in
this subsection are λ = 0.00003 and γ = 0.003. In SART,
the parameter ω = 1. In PC algorithm, τ = 1, maximum
iteration number is 2000 and stopping criterion is ε = 1
× 10-5, and the other stopping criterion is ε0 = 1 × 10-6
to our method.

Figure5 and Figure 6 demonstrates the
reconstructed Walnut images using commercial FBP
method and our method. As shown in Figure 5, the first
row are the images using commercial FBP method
from 600, 300 and 200 projection views in angular
scope [0, 180o], respectively; the third row are the
results using our method from 600, 300 and 200
projection views in angular scope [0, 180o],
respectively; the second row and third row are the
enlarged images of the red rectangle box of the first
row and third row, respectively; the lower left corner
images of the first and third row are the enlarged
images of the red rectangle box. As shown in Figure 6,
the reconstructed Walnut images using commercial
FBP method and our method are reconstructed from
150, 100 and 76 projection views in angular [0, 180o],
respectively. The layout of the rest in Figure 6 is as
shown in Figure 5.
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Figure 5. In the first row, the three images using commercial
FBP method are reconstructed from 600, 300 and 200
projection views in angular scope [0, 180o], respectively. The
images of the third row using our method are the 100th
iterative results reconstructed from 600, 300 and 200
projection views in angular scope [0, 180o], respectively. The
second and forth row are the corresponding enlarged images
of the red rectangle box of the first and third row. The lower
left corner images of the first and third row are the enlarged
images of the red rectangle box. The red arrows indicate the
fuzzy or broken parts. The display window is [0.15, 0.85]cm-

1.

Figure 6. In the first row, the three images using commercial
FBP method are reconstructed from 150, 100 and 76
projection views in angular scope [0, 180o], respectively. The
images of the third row using our method are the 100th
iterative results reconstructed from 150, 100 and 76
projection views in angular scope [0, 180o], respectively. The
second and forth row are the corresponding enlarged images
of the red rectangle box of the first and third row. The lower
left corner images of the first and third row are the enlarged

images of the red rectangle box. The red arrows indicate the
fuzzy or broken parts. The display window is [0.15, 0.85]cm-

1.
According to Figure 5 and Figure 6, it is observed

that the Walnut images using FBP method contain the
larger noise and some details of them are distorted
along with the decrease of the projection views.
Although the number of the projection views are
decreasing, the results using our method have relatively
high quality and contrast, except the rupture of the
filament at the top of the Walnut image. It can be seen
our method outperforms the commercial FBP method
in suppressing noise and preserving details, and our
method has the ability for reducing the projection
views to lower the radiation exposure while
maintaining relatively high image quality.

4 Conclusions and Perspectives
To deal with the few-view reconstruction problem
within shortscan, we adopt l1/2 regularization for
wavelet frames based image reconstruction model, and
adopt the SART-PC-HT method to solve it. First, the
existence of the presented model is analyzed through
the existing corollary. Second, ADM is utilized to
separate the original problem into two subproblems,
which can be settled using SART, PC algorithm and
HT algorithm, respectively. Third, simulated NCAT
experiment and real Walnut experiment confirm that
our method can obtain the reconstructed images with
relatively good quality and high contrast while
decreasing the projection views. That means our
method has the ability to settle the few-view
reconstruction problem within short-scan whose
projection data contains noise. However, when the
projection data are very incomplete and has high-level
noise, the details of the reconstructed images using our
method will not be preserved very well.

In our method, the parameters are chose by trial and
error, which are not adaptive for any given projection
data. In the future, we will analyze the adaption of the
parameters in our method. For high level noise and few
projection views, our method will be not effective,
which will be improved with taking the type of the
noise of the projection data into consideration.
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