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Abstract. One of the main issues in the design of foundations is the correct 
forecast of the development of long-term deformations (settlement) of the 
foundations. Among the main factors affecting settlement, one can single 
out the neglect of changes in the rheological parameters of the soil in time 
and the neglect of the loading regime, as well as the processes of soil 
hardening in time. The work presents the results of a study of the behaviour 
of samples of clayey soil with a disturbed structure under conditions of 
triaxial cyclic loading, taking into account the strengthening effect. The 
relevance of the problem of studying the hardening process is associated 
with the assessment of the deformability and strength of clays with 
rheological properties. The tests were carried out in a pneumatic stabilimeter 
with an artificial soil created of paste. After preparing the samples, they were 
placed in a sealed container until the start of the test for a period of 1 to 5 
days. To establish the ultimate strength of the soil, single static loads were 
carried out at a given value of the uniform pressure. The main control 
characteristics during the tests were the maximum and minimum values of 
the cycle voltages. If the sample did not fail during cyclic loading, it was 
destroyed by a stepped increase in the static load. The dependences of the 
change in the strength of a clay soil sample during the holding time before 
the start of the test were obtained at various values of all-round compression 
and the amplitude of the cycle. The strength of the soil with a change in the 
holding time increased up to 1.27 times. 
Keywords. Clay, cyclic loads, soil testing, triaxial test, strengthening, 
time-dependent. 

1 Introduction 
It is known that the modern foundations of soil mechanics were formed at the beginning of 
the last century, in connection with the development of technology, the construction of 
railways and highways, when the issues of the embankment’s operation and subgrade under 
the influence of dynamic loads became important. The operation of the engineering structure 
foundations under dynamic loading is determined by the following factors: the properties of 
the foundation soils, the parameters of the dynamic load and the scheme of its transfer to the 
structure, material, structure and the nature of the interface between the foundation and the 
base [1-5]. When a heterogeneous soil medium interacts with the underground part of a 
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structure of finite rigidity under the influence of static and variable loads, a complex stress-
strain state arises, which can lead to additional residual deformations [6-12], as well as 
emergency situations [13-19]. Creep and relaxation, a decrease in strength under prolonged 
action of loads are all manifestations of the rheological properties of soils. Without taking 
into account rheology, the solution of the main problems of soil mechanics is not possible 
[20-25].  

2 Materials and methods 
Soils are discrete bodies with a complex form of formation and subsequent changes. The 
multicomponent nature of soils, porosity, complex composition up to the presence of colloids 
and biota, structural bonds between particles, changes in properties under the influence of 
various natural and man-made influences distinguish soils from ordinary structural materials. 

Cohesive (clay) soils, composed of lamellar-flaky minerals, are more sensitive to static loads, 
especially if they are sufficiently moistened, but they react little to dynamic influences due to the 
presence of colloidal crystallization bonds between mineral particles. The values of the total 
deformation moduli depend on the range of loads in which they are determined [23-26].  

To study the nature of the behavior of clay soil under static and cyclic loads, a series of tests 
of samples of natural and artificial soils were carried out in a triaxial compression device – a 
stabilometer with the support of the «ASIS» computing system (Fig. 1) in the laboratory of soil 
science of the department of bases and foundations, dynamics of structures and engineering 
geology of KGASU was carried out. All parameters of laboratory work were taken according 
to the current regulatory methodology for the scheme of unconsolidated-undrained tests. 

 

 
Fig. 1. Triaxial compression device – stabilometer. 

The tests were carried out on artificially created compacted soil, made by mixing dry soil 
and water with a percentage of 23%. The ground mass was hammered into a special shape, 
from which, after the required time, four standard specimens with dimensions of 76 mm in 
height and 38 mm in diameter were cut out, which were subsequently recorded for static and 
cyclic loads in a triaxial compression device, a stabilometer. 

The method of static testing is to find the strength characteristics of the soil. For this, the 
«crushing» scheme was used at a given constant value of the all-round pressure.  

The method of cyclic testing is as follows: prepared soil samples are subjected to 
comprehensive static compression, simulating the natural stress state σ1=σ2=σ3. After the 
stage of deviatorial loading, applied in steps of 10% until a value equal to the maximum 
dynamic load σd is reached, the cyclic action is activated. This impact occurs continuously 
without waiting for the conditional stabilization of relative deformations N times. If the 
sample withstands all N cycles and does not collapse, the stabilometer brings it to destruction 
stepwise according to the «crushing» scheme. Thus, the experimental research program 
included two series of experiments. In the first series, the holding time of the sample before 
the start of the test was changed and the sample was subjected to cyclic loading as described 
above (Fig. 2a). In the second series, in addition to exposure before the start of the test, the 
sample rested after application of 100 cycles from 1 day to 5 days, and then collapsed with a 
gradually increasing static load (Fig. 2b). In each series, at least three twin specimens are 
tested with the same loading parameters. 

 

 
Fig. 2. Loading modes: a) Series 1; b) Series 2. I – all-round compression stage; II – deviatoric loading 
stage; III – crushing stage; IV – cyclic loading stage; V – rest stage. 

During cyclic loading, a clay soil sample, depending on the values of the maximum and 
minimum cycle stresses, is destroyed at a lower deviator value when compared with static 
loading. In the case when the destruction of a soil sample during the application of a cyclic load 
did not occur (this is often observed at low cycle amplitudes), with further destruction by a 
static load, an increase in the strength of the soil can be observed in comparison with a sample 
that was not subjected to cyclic loading [26]. In connection with the above, when developing 
the research program, it was customary to evaluate the change in the vertical deformation of 
the sample at the stage of cyclic loading and the strength of the soil if the sample withstood a 
specified number of cycles and was destroyed by a static load. As the main indicators of soil 
hardening processes, a change in the rate of increase in deformations at the 10th, 50th and 100th 
cycles, respectively, as well as an increase in soil strength at the end of the test were taken. 

Laboratory studies were carried out on samples of disturbed clays, in which the number of 
plasticity Ip=17,3. The rate of restoration of bonds between solid particles in soils with such a 
content of clay particles is not very high, so it was decided to introduce the factor «time». After 
preparation, soil samples were kept in a desiccator from 1 day to 5 days. After this «holding», 
the samples were subjected to triaxial compression with a vertical cyclic deviatorial load. 

3 Results and discussion 
In the first series of experiments (Fig. 3), it was found that in the process of cyclic loading 
over the interval from 10 to 50 cycles, vertical deformations decreased by 30% for specimens 
with «holding» for 5 days, and by 20% for «holding» for 2 days. At the same time, on the 
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100th cycle, a decrease in the increase in deformations by 60% and 10%, respectively, was 
established in comparison with the deformation of the sample with an exposure of «1 day». 

Under cyclic loading, an increase in holding time leads to an overall reduction in vertical 
deformation. A decrease in the deformability of the soil of the disturbed structure indirectly 
indicates the restoration of structural bonds in the soil of the disturbed structure. 

 

 
Fig. 3. Changing the soil deformation during cyclic loading as a function of the sample time delay 
before the test. 

The change in the strength of the samples, taking into account the holding time before the 
start of the test, was considered as the main indicator of the strengthening of the soil of the 
damaged structure. The strength of the soil is understood as the vertical pressure σ1, at which 
the samples were destroyed. 

Specimens of the first series after exposure and cyclic loading failed at a higher value of 
σ1 than under static loading, so for 1 day the hardening was 13%, 2 days – 24%, and for 5 
days – up to 29% (Fig. 4). It should be noted that the sample tested without «holding» did 
not withstand 100 cycles and failed in the course of cyclic loading, the value of which was 
70% of the breaking value σ1 according to the results of static loading. 

 

 
Fig. 4. Dependence of soil strength in the process of cyclic loading on the holding time of the sample 
before the start of the test. 

A second series of experiments was performed with samples held in a desiccator prior to 
testing and during the «rest» stage (Fig. 5). In cases where the sample was subjected to all-
round compression σ2=100 kPa, an increase in the total holding time from 1 to 5 days led to 
an increase in strength on the first day by 4%, on the second day by 14%, and on the fifth day 
by 17%. In the series, where the horizontal pressure was σ2 = 200 kPa, the growth of soil 
strength in the first day was up to 35%, in the next – up to 47%. The foregoing allows us to 
conclude that the strengthening of clay soil is influenced by both the time between the blocks 
of the application of the active load and the magnitude of the all-round compression. 

 

 
Fig. 5. Dependence of soil strength in the process of cyclic loading on the holding time of the sample 
before the start of the test and the value of all-round compression. 

In general, according to the results of a series of cyclic loading experiments with different values 
of the magnitude of all-round compression, it was found that the clay soil is hardened up to 27%. 

4 Conclusions  
Experimental studies of changes in deformation and strength parameters of clay soil under 
cyclic triaxial compression have been carried out. It has been established that the processes 
of strengthening the soil of the disturbed structure depend on the holding time of the samples 
after fabrication before the start of loading, as well as on the «rest» time between the loading 
blocks and the magnitude of all-round compression. Strengthening of the soil is manifested 
in an increase in the breaking load by 27% and a decrease in the deformability of the sample. 
With an increase in the vertical pressure step under cyclic loading, soil hardening occurs 
faster, and vertical deformation decreases. 
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