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Abstract. High rates of growth in the volume of earthworks in winter, with 
a lack of funds for the purchase of new equipment, determine the relevance 
of work to improve the existing and create new working bodies for the 
development of frozen grounds and snow-ice formations to increase the 
efficiency of their destruction without increasing the power of the base 
machine. This can be done by installing a fundamentally new cutting tool in 
the form of elliptical circular knives on the working bodies. The article deals 
with the kinematics of an ellipsoidal disk working body. Expressions for 
determining the displacement, velocity and acceleration of the point of the 
cutting edge of the disk are obtained analytically. It was found that the points 
of the cutting edge of the disk move in space along a complex trajectory, and 
the absolute values of velocity and acceleration are variable parameters. The 
regularity of the change in the angle of entry of the disk into the ground at 
different values of the angle of its attachment to the shaft of the working 
battery was revealed, and the main design and technological parameters 
were determined and substantiated. 
Keywords. Ellipsoidal disc, circular knive, kinematics, frozen ground. 

1 Introduction 
Further development of the north and the territories adjacent to the Baikal-Amur Mainline 
will entail an increase in the development of frozen grounds [1-18]. The construction of oil 
and gas fields in Siberia requires the construction of transport routes, cable networks, drilling 
of wells and loosening of frozen ground [9, 19]. Due to the swampy terrain, the construction 
of pipelines to the Far East and to China is a particularly urgent problem of mechanically 
accelerating the development of frozen grounds and snow-ice formations in winter [1, 17, 18]. 

High rates of growth in the volume of earthworks in winter with a lack of funds for the 
purchase of new equipment determine the relevance of work to improve the existing and 
create new working bodies for the development of frozen grounds and snow-ice formations 
to increase the efficiency of their destruction without increasing the power of the base 
machine [2, 12, 13]. This can be done by installing a fundamentally new cutting tool in the 
form of elliptical circular knives on the working bodies. 

An integral part of the design stage of machines is to ensure the strength of structural 
elements, reduce energy costs, as well as identify the conditions for the stability of the 
movement of the unit [5, 6, 14, 15]. 
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The developed working body for ground processing contains elliptical disks, fixed on the 
shaft of the working battery strictly at a certain angle [20]. It is impossible to analyze the process 
of interaction of the proposed working body with the ground and substantiate the main 
parameters of the technology without studying the kinematics of the ellipsoidal disk [4, 7]. 

The purpose of this paper is to study the kinematics of the disk operating element, namely the 
construction of movement trajectories, velocity and acceleration of point cutting edge of the disk. 

2 Methods 
When studying the kinematics of a flat circular disk fixed on a shaft at a certain angle, some 
authors [8, 11] make the assumption that the distance of the point of the cutting edge of the disk 
from the axis of rotation is a constant value, and the absolute velocity vector is equal to the sum 
of the vectors of the translational velocity of the disk and the velocity of the disk in harmonic 
vibration mode. This technique, as calculations show, distorts the real picture [10, 16]. 

To obtain the main kinematic dependences, in contrast to the above technique, we 
considered the motion of a point M arbitrarily selected on the cutting edge of an ellipsoidal 
disk (hereinafter referred to as a disk) in a spatial rectangular coordinate system (Fig. 1). 

To conduct laboratory research in accordance with the developed design and technical 
documentation and in accordance with the developed program, an experimental installation 
was made in the laboratory of the departmen (Fig. 2).  

Research methodology and methods. Theoretical studies used the basics of mathematical 
analysis, analytical geometry, theoretical mechanics and basic methods of agricultural mechanics. 

 

 
Fig. 1. Elliptical disk. 

 
Fig. 2. Laboratory setup. 

The diameter of the disk D in the profile plane (hereinafter – the diameter of the disk), 
the angle of inclination α of the major axis of the ellipse to the axis of rotation of the disk, 
and the translational speed of the machine Ve are given. The position of the investigated point 
in the profile plane is characterized by the polar angle φ = ωt (hereinafter referred to as the 
angle of rotation of the disk). Disks are «passive», so the angular velocity of their rotation is 
calculated according to the well-known formula: ω = 2Vе/D. 

First, we determine the abscissa of point M: 
XM = Vet – M’’C = Vet – Dsin/2. (1) 

Substituting in expression (1) the known values Ve = D/2, t = /, we have: 
XM = D( – sin)/2. (2) 

Now you can define the fingering point for the point of interest. As can be seen from Fig. 4, it 
is equal to the length of the segment AM: 

 𝑍𝑍� = 𝐴𝐴𝐴𝐴 =
𝐷𝐷
2

− 𝑂𝑂�
��𝐶𝐶 =

𝐷𝐷
2

−
𝐷𝐷
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷 (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)/2. (3) 
To determine the ordinate of point M, consider the right-angled triangle OMA: 

YM = OA = AM/tg  = ZM/tg  = D(1 – cos )/(2 tg ). (4) 
Thus, the parametric equations of motion of the point M of the cutting edge of the disk in 

the spatial rectangular coordinate system OXYZ were analytically obtained: 
𝑋𝑋� = 𝐷𝐷 (𝑐𝑐 − 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐)/2 ,

𝑌𝑌� = 𝐷𝐷 (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)/(2𝑡𝑡𝑡𝑡𝑡𝑡) ,
𝑍𝑍� = 𝐷𝐷 (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)/2 .

�. (5) 

The magnitude (modulus) of movement S of point M is determined by the formula: 
𝑆𝑆 = �𝑋𝑋�

� + 𝑌𝑌�
�+𝑍𝑍�

� = �
�

�(𝑐𝑐 − 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐)� + [(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) / 𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡 ]� . (6) 
Differentiating expression (5) with respect to time, it is possible to calculate the projection 

of the velocity of the point under study. So: 
𝑉𝑉�

� = 𝑑𝑑𝑋𝑋�/𝑑𝑑𝑡𝑡 = 𝐷𝐷𝐷𝐷 (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) / 2 ,
𝑉𝑉�

� = 𝑑𝑑𝑌𝑌�/𝑑𝑑𝑡𝑡 = 𝐷𝐷𝐷𝐷 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 / (2𝑡𝑡𝑡𝑡𝑡𝑡) ,
𝑉𝑉�

� = 𝑑𝑑𝑍𝑍�/𝑑𝑑𝑡𝑡 = 𝐷𝐷𝐷𝐷 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 / 2 .
�. (7) 

The magnitude (modulus) of the absolute speed is determined from the formula: 
𝑉𝑉� = �(𝑉𝑉�

�)� + (𝑉𝑉�
�)� + (𝑉𝑉�

�)� = ��
�

�2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + (𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)�.  (8) 
Differentiating expression (7) with respect to time gives the projection of the acceleration 

of point M: 
𝑎𝑎�

� = 𝑑𝑑𝑉𝑉�
�/𝑑𝑑𝑡𝑡 = 𝐷𝐷𝐷𝐷� 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐/2,

𝑎𝑎�
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�. (9) 

The magnitude (modulus) of the absolute acceleration is determined by the formula: 

𝑎𝑎� =
𝐷𝐷𝐷𝐷�

2
�1 + (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)� . (10) 

The direction of the vectors of velocity and acceleration of the investigated point M of 
the cutting edge of the disk in space is determined by the so-called direction cosines, which 
are calculated, respectively, by the formulas: 

𝐾𝐾�
�� = 𝑉𝑉�

� / 𝑉𝑉� = (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) / �2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + (𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)� ,
𝐾𝐾�

�� = 𝑉𝑉�
� / 𝑉𝑉� = 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 / (𝑡𝑡𝑡𝑡𝑡𝑡 �2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + (𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)� ) ,

𝐾𝐾�
�� = 𝑉𝑉�

� / 𝑉𝑉� = 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 / �2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + (𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)� . 

�, (11) 

 𝐾𝐾�
�� = 𝑎𝑎� 

� /𝑎𝑎� = 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 / �1 + (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)�  ,
 𝐾𝐾�

�� = 𝑎𝑎�
�  /𝑎𝑎� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 / (𝑡𝑡𝑡𝑡𝑡𝑡 �1 + (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)� ) ,

𝐾𝐾�
�� = 𝑎𝑎�

�  /𝑎𝑎� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 / �1 + (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)�  .

�. (12) 

Now we determine the value of the polar radius of the disk, that is, the radius of the ellipse 
in the plane of the cutting edge  = O1

’M’. To do this, we will use the canonical equation of 
the ellipse, which has the form: 

(𝑋𝑋�/𝑎𝑎)� + (𝑌𝑌�/𝑏𝑏)� = 1. (13) 
Substituting into equation (13) the values of the semiaxes a = D/(2 sin α), b = D/2 and the 

current coordinates of the point 𝐴𝐴� in a Cartesian coordinate system 𝑂𝑂�
� X ′Y ′: 𝑋𝑋� = 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 

𝑌𝑌� = 𝜌𝜌 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐, after some transformations, we get an expression for calculating the polar radius 
of the disk. It looks like: 

𝜌𝜌 = 𝐷𝐷/ (2�𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐 + (𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)�). (14) 
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The diameter of the disk D in the profile plane (hereinafter – the diameter of the disk), 
the angle of inclination α of the major axis of the ellipse to the axis of rotation of the disk, 
and the translational speed of the machine Ve are given. The position of the investigated point 
in the profile plane is characterized by the polar angle φ = ωt (hereinafter referred to as the 
angle of rotation of the disk). Disks are «passive», so the angular velocity of their rotation is 
calculated according to the well-known formula: ω = 2Vе/D. 

First, we determine the abscissa of point M: 
XM = Vet – M’’C = Vet – Dsin/2. (1) 

Substituting in expression (1) the known values Ve = D/2, t = /, we have: 
XM = D( – sin)/2. (2) 

Now you can define the fingering point for the point of interest. As can be seen from Fig. 4, it 
is equal to the length of the segment AM: 
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− 𝑂𝑂�
��𝐶𝐶 =
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𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐷𝐷 (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)/2. (3) 
To determine the ordinate of point M, consider the right-angled triangle OMA: 

YM = OA = AM/tg  = ZM/tg  = D(1 – cos )/(2 tg ). (4) 
Thus, the parametric equations of motion of the point M of the cutting edge of the disk in 

the spatial rectangular coordinate system OXYZ were analytically obtained: 
𝑋𝑋� = 𝐷𝐷 (𝑐𝑐 − 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐)/2 ,
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�. (5) 

The magnitude (modulus) of movement S of point M is determined by the formula: 
𝑆𝑆 = �𝑋𝑋�

� + 𝑌𝑌�
�+𝑍𝑍�

� = �
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�(𝑐𝑐 − 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐)� + [(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) / 𝑐𝑐𝑠𝑠𝑠𝑠𝑡𝑡 ]� . (6) 
Differentiating expression (5) with respect to time, it is possible to calculate the projection 

of the velocity of the point under study. So: 
𝑉𝑉�

� = 𝑑𝑑𝑋𝑋�/𝑑𝑑𝑡𝑡 = 𝐷𝐷𝐷𝐷 (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) / 2 ,
𝑉𝑉�

� = 𝑑𝑑𝑌𝑌�/𝑑𝑑𝑡𝑡 = 𝐷𝐷𝐷𝐷 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 / (2𝑡𝑡𝑡𝑡𝑡𝑡) ,
𝑉𝑉�

� = 𝑑𝑑𝑍𝑍�/𝑑𝑑𝑡𝑡 = 𝐷𝐷𝐷𝐷 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 / 2 .
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�)� + (𝑉𝑉�

�)� = ��
�

�2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + (𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)�.  (8) 
Differentiating expression (7) with respect to time gives the projection of the acceleration 

of point M: 
𝑎𝑎�

� = 𝑑𝑑𝑉𝑉�
�/𝑑𝑑𝑡𝑡 = 𝐷𝐷𝐷𝐷� 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐/2,
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The direction of the vectors of velocity and acceleration of the investigated point M of 
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� / 𝑉𝑉� = (1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) / �2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + (𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)� ,
𝐾𝐾�

�� = 𝑉𝑉�
� / 𝑉𝑉� = 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 / (𝑡𝑡𝑡𝑡𝑡𝑡 �2(1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) + (𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐/𝑡𝑡𝑡𝑡𝑡𝑡)� ) ,

𝐾𝐾�
�� = 𝑉𝑉�
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in the plane of the cutting edge  = O1

’M’. To do this, we will use the canonical equation of 
the ellipse, which has the form: 

(𝑋𝑋�/𝑎𝑎)� + (𝑌𝑌�/𝑏𝑏)� = 1. (13) 
Substituting into equation (13) the values of the semiaxes a = D/(2 sin α), b = D/2 and the 

current coordinates of the point 𝐴𝐴� in a Cartesian coordinate system 𝑂𝑂�
� X ′Y ′: 𝑋𝑋� = 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 

𝑌𝑌� = 𝜌𝜌 𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐, after some transformations, we get an expression for calculating the polar radius 
of the disk. It looks like: 
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Kinematic parameters for a given condition are determined depending on the angle of 
rotation of the disk φ. When justifying the design parameters, we are faced, however, with 
the angle ψ, which characterizes the position of the considered point M in the plane of the 
cutting edge. To determine the mathematical relationship between the angles φ and ψ, we 
express the application of the point M through the angle ψ: 

ZM = D/2 – O1B. (15) 
Since О1В=MO1 sin α, and in turn, MO1=ρ cos ψ, formula (15) takes the following form: 

𝑍𝑍� = �
�

− 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠.  (16) 
Based on expressions (3) and (16), we can write: 

�(������)
�

= �
�

− 𝜌𝜌 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠.  (17) 
Substituting into equation (17) the value of ρ from formula (14), after certain 

transformations and simplifications, we finally have: 
𝑐𝑐 = 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠  �𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 /�𝑐𝑐𝑐𝑐𝑐𝑐�𝑠𝑠 + (𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠)�� . (18) 

As expression (18) shows, the angle ψ is generally not proportional to the angle φ. However, 
for angles equal to 0°, 90°, 270° and 360°, ψ = φ, which can be clearly seen from Fig. 1. 

During the technological process, the disks enter the ground at different angles β. Let us reveal 
the regularity of this angle change, since it is necessary in the future when determining individual 
technological parameters. In the general case, from the right-angled triangle OEF we have: 

𝑐𝑐𝑠𝑠𝑠𝑠 𝛽𝛽 = 𝐷𝐷/(2𝜌𝜌). (19) 
Substituting into expression (19) the value of the polar radius ρ from dependence (14), 

we obtain a formula for determining the angle β, which has the form: 
𝛽𝛽 = 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 �𝑐𝑐𝑠𝑠𝑠𝑠�𝑐𝑐 + (𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)�. (20) 

Only a certain part of the cutting edge of the disk is involved in the process of work. The 
length of the edge section cutting the seam is equal to the arc length OL’ and is calculated 
using the following equation [3]: 

𝑑𝑑𝑙𝑙� = �(𝑑𝑑𝑋𝑋�ʹ)� + (𝑑𝑑𝑌𝑌�ʹ)� + (𝑑𝑑𝑍𝑍�ʹ)�. (21) 
where 𝑋𝑋�ʹ, 𝑌𝑌�ʹ, 𝑍𝑍�ʹ – coordinates of point L. 

Due to the fact that the length of the arc OL’ in this case is part of the perimeter of the 
ellipse, equation (21) is reduced to the form: 

𝑙𝑙� = 𝑎𝑎 � �1 − 𝜀𝜀�𝑐𝑐𝑠𝑠𝑠𝑠�𝛾𝛾 𝑑𝑑𝛾𝛾,

�

�

 (22) 

where a is the semi-major axis of the ellipse, ɛ is the eccentricity of the ellipse. 
As known, 

𝜀𝜀 = �𝑎𝑎� − 𝑏𝑏� /𝑎𝑎. (23) 
After substituting the values of the semiaxes a and b into this formula, we obtain that 

ɛ=cos α. 
To determine the upper limit of integration in expression (22), i.e., the angle γ, we first 

determine the cosine of the angle 𝛿𝛿 from a right-angled triangle 𝐾𝐾𝐾𝐾�
��𝐿𝐿�� : 

𝑐𝑐𝑐𝑐𝑐𝑐𝛿𝛿 = 𝐾𝐾�
��𝐾𝐾/𝐾𝐾�

��𝐿𝐿��. (24) 
Therefore, after substituting the values of the corresponding segments into formula (24), we have: 

𝛿𝛿 = 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [(1 − 2𝑡𝑡)/𝐷𝐷]. (25) 
where t is the processing depth. 

Then, using formula (18), we pass to the sought angle γ: 
𝛾𝛾 = 𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠  �𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠𝛿𝛿 /�𝑐𝑐𝑐𝑐𝑐𝑐�𝛿𝛿 + (𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠𝛿𝛿)��. (26) 

During one revolution, the investigated point M of the cutting edge of the disk travels a 
path equal to the perimeter of the ellipse: 

𝐿𝐿� = 4𝑎𝑎 � �1 − 𝑐𝑐𝑐𝑐𝑐𝑐�𝑠𝑠 𝑐𝑐𝑠𝑠𝑠𝑠�𝛾𝛾 𝑑𝑑𝛾𝛾.

���/�

�

 (27) 

The elliptic integrals of expressions (22) and (27) cannot be calculated in the usual way. 
To solve them, ready-made tabular data are used [3]. 

3 Results and discussion 
As a result of calculations, the corresponding graphs were built. 

The point of the cutting edge of the disk makes a complex spatial movement during 
movement (Fig. 3a). In the horizontal and vertical planes, it moves along a sinusoidal 
trajectory (Fig. 3b), which contributes to effective crumbling of the ground. 

 

 
a) 

 
b) 

Fig. 3. Trajectory (a) and displacement graphs (b) of the point of the cutting edge of an elliptical disk. 

As for the components of the speed of the point under study (Fig. 4), the nature of their 
changes in different planes is different. Velocity components directed along the Y and Z axes 
twice in one revolution at angles of rotation φ equal to 90° and 270° reach their extreme 
values, and at φ = 0° and φ = 180° they are equal to zero. The velocity component 𝑉𝑉� 

� , on the 
contrary, reaches its maximum value at φ = 180°, and at φ = 0°, the component 𝑉𝑉�

� = 0.  
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Fig. 4. Graphs of speeds of a point of a cutting edge of a disk. 

The projections of the acceleration of point M of the cutting edge of the disk, as shown 
by the graphs (Fig. 5), change both their values and directions depending on the angle φ.  

 

 
Fig. 5. Graphs of accelerations of the point of the cutting edge of the disk. 

Acceleration components 𝑎𝑎�
�  and 𝑎𝑎�

�  at φ = 0° and φ = 180°, i.e. twice in one revolution, 
reach their extreme values, and at angles φ equal to 90° and 270°, these components of 
acceleration are equal to zero. It is also seen that the acceleration 𝑎𝑎�

�  per revolution twice at 
angles φ equal to 90° and 270° reaches its maximum value, and at φ = 0° and φ = 180°, 𝑎𝑎�

� = 0. 
The variable nature of the components of the velocity and acceleration of the points of 

the cutting edge contributes to the intensive self-cleaning of the disks from the adhered 
ground. With an increase in the forward speed of the unit, this effect increases. 

From the graphs presented in Fig. 6, it can be seen that the angle of entry of the disk into 
the ground is a variable value. 

 

 
Fig. 6. Graphs of changing the angle of entry of disks into the ground. 

The approach angle reaches its minimum value at ψ = 0°, while βmin=α, and the maximum 
value – at ψ = 180°, then βmax = (180° – α). It is also seen that the disk enters the ground at a 
right angle twice during one revolution at angles ψ equal to 90° and 270°. Here we note that 
in the design scheme, due to the specifics of the design, at angles ψ equal to from 90° to 270°, 
the counterclockwise reference system of angle β is violated. Therefore, in the specified 
interval, the values of this angle are determined from the following expression: 𝛽𝛽� = (180° – β), 
where β is the value of the angle of approach of the disk, calculated by the formula (20). 

4 Conclusions 
Laboratory studies have shown that the constancy of the distance from the cutting edge of the 
disks to the axis of rotation significantly improves the dynamics of the movement of the 
machine, and thus the technological stability. The movement becomes stable, that is, there is 
no vertical vibration. The disks smoothly enter the ground, the conditions for sliding cutting of 
the formation are stabilized, and the uniformity of the working depth of processing is ensured. 

Having analyzed the parametric equations of motion obtained by the method of analytical 
geometry and the corresponding graphs built on their basis, we can draw the following 
conclusions: 

1) points of the cutting edge of the disk move in space along a complex trajectory, in 
particular in the horizontal and vertical planes, they move along a sinusoidal trajectory; 

2) the components of the velocity and acceleration of the point are variable parameters, 
which contributes to the active destruction of the ground and self-cleaning of the disks from 
various residues. 
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