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Abstract：Considering the linear elastic fracture mechanics and complex function theory, considering the 
non hydrostatic pressure field, the stress solutions of lining and surrounding rock of deep buried circular 
underground cavern with lining under the action of external internal pressure are studied. The fracture 
mechanics model of underground cavern supporting structure is established, and the numerical verification 
is carried out. The analytical solution of circular pressure cavern with lining shows that when the internal 
pressure is 0, it can degenerate into the existing classical solution. The results of finite element calculation 
and analytical calculation show that the tensile stress of lining is very large at the vault and arch bottom 
under the action of strong external supporting force. The calculation shows that the cracks of lining will 
expand and open under the action of tensile stress, and the lining is in the shape of "flat duck egg", However, 
if there is no through rupture, there will be great stress concentration at the top and bottom of the arch, and 
the tensile stress value is much larger than that calculated by elastic mechanics. Therefore, it is a good 
method to configure a certain amount of reinforcement to enhance the stiffness and tensile strength of the 
lining. 

1 Introduction 
The theoretical research on underground circular tunnel 
excavation and support started from the famous Fenner 
formula [1] and Kastner formula [2], and these classical 
solutions have still been extensively applied so far. Ren 
et al. [3-4] pointed out that in the deeply buried hydraulic 
tunnel, the Fenner formula should have different 
expressions under different internal pressure loads, and 
then they derived the elastic-plastic solution to a lined 
circular tunnel on this basis. Furthermore, for a deeply 
buried underground circular tunnel with a high internal 
water pressure, the analytical elastic-plastic solution to 
the deeply buried unlined circular cavern was derived in 
consideration of the influence of seepage field [5]. Wang 
and Li [6] derived a new elastic-plastic solution to the 
lined circular pressure tunnel under the hydrostatic 
pressure field, and this solution, which considered the 
release of ground stress and time sequence of lining 
installation, could be reduced to classical solutions like 
Fenner and Kirsch. Taking a deeply buried hydraulic 
pressure tunnel as the study object, Wang et al. [7] derived 
the elastic-plastic solution to the circular tunnel with 
internal pressure based on the D-P criterion, and analyzed 
the influence of change in hydraulic pressure on the 
lining and plastic zone of surrounding rock. Based on the 
twin-shear unified strength theory, Fan W and Yu [8] 

derived the analytical elastic-plastic solution to a 
pressure tunnel in consideration of material shear 
dilatancy and softening. Considering the nonhydrostatic 
pressure field, Chu et al. [9] derived the elastic stress 
solution and viscoelastic stress solution of surrounding 
rock and lining in a deeply buried circular tunnel, but the 
influence of internal pressure was neglected. After 
considering the heat exchange of compressed air with 
lining and surrounding rock, Zhou and Zhou et al. [10-11] 

derived the formulas for the stress field and temperature 
field distributions of the surrounding rock and lining in 
an underground compressed air energy storage cavern 
under typical operating conditions.  

The lined underground circular cavern tunnel is prone 
to cracking, thus destructing the integrity of lining 
structure and greatly shortening the service life of tunnel. 
The generation and propagation of lining cracks are a 
very complex nonlinear process. Based on a statistical 
analysis of lining crack distribution characteristics in the 
existing highway tunnels, Huang et al. [12] used the 
extended finite element method to study the influences of 
factors like eccentric compression, cavity behind lining 
and relaxation ground pressure on the crack propagation 
and distribution characteristics. Zhang et al. [13] simulated 
the crack distribution in reinforced concrete using a 
discrete crack model, and analyzed the influence of 
reinforcement amount on the crack width. Zhu et al. [14] 
analyzed the characteristics and mechanisms of 
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construction cracks, eccentric compression cracks and 
differential settlement cracks of a double-arched tunnel, 
and proposed the corresponding prevention and control 
measures.  

Most of the above studies have assumed that the 
underground circular cavern is under a uniform 
hydrostatic pressure field, but actually, most deeply 
buried circular caverns are under the nonhydrostatic 
pressure field. The Kirsch solution is a classical solution 
to unlined circular caverns in the nonhydrostatic pressure 
field, but this solution does not consider the effect of 
lining. As for the theoretical derivation in this study, it 
was assumed that the underground cavern was under the 
nonhydrostatic pressure field, the effect of high pressure 
inside the cavern was taken into account, the stress 
solutions to the lining and surrounding rock in the lined 
underground circular cavern were derived, followed by 
the finite element verification. On this basis, a numerical 
model of lining cracking and crack propagation under the 
action of internal pressure was established through the 
extended finite element method. 

2 Mechanical Response Analysis of 
Surrounding Rock and Lining Structure 
A mechanical planar strain model was constructed for the 
deeply buried circular cavern under the joint action of 
nonhydrostatic pressure field and high internal pressure, 
as shown in Figure 1. 
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Figure 1: Calculation Model of Underground Circular Cavern 

As shown in Figure 1, assume that the lining is sealed 
and keep a close contact with the surrounding rock, the 
frictional force on the contact surface between lining and 
surrounding rock is neglected, the outer diameter r0 is 
equivalent to the tunnel excavation radius, and the air 
storage cavern is located in a nonhydrostatic pressure 
field with the lateral pressure coefficient of λ. The 
boundary conditions of the model are as follows: 
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The analytical function of surrounding rock, the 
boundary conditions of which are combined, is given 
through the following equation [15]:  
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(2) The stress solution to the surrounding rock is as 
follows:  
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 (3) With the boundary conditions combined, the 
analytical function of lining is given by the following 
equation:  
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(4) The stress solution to the lining is as below: 
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(5) γ, β, δ, H and A1-A6 are expressed by Equation (6) 
and Equation (7): 

2 2
0 1

2 2 2 2
0 1 0 1

2 2 4
0 1 1

2 2 2 4 2 2
0 1 0 0 0 1

2 2 3
0 1

2 2 3
0 1
2 2 3

0 1
2 2

0 1

[( 1) 2 ]
2 ( ) [( 1) 2 ]

[2 ( 1) 4 ]
2 (1 )( ) ( 1) 2

( )2
(3 1)( )
( 1)( )
(3 1)( )

c

c c

i c i

c c

c

c

c

c

G r r
G r r G r r

G p r r p r
G P r r r GP r PGr r

GH G r r
GH G r r
GH G r r
GH G r r







 









 
 

   

 
    

 


  

  
 

   3

6 4 2 2 4 6
0 0 1 0 1 1( 3) 3 (3 1) 3 ( 3) (3 1)c c c cH r r r r r r   
















       

(6) 

2

E3S Web of Conferences 276, 01011 (2021) https://doi.org/10.1051/e3sconf/202127601011
WCHBE 2021



2 2
0 1

1 2 2 2 2
0 1 0 1

2 2 2 2
0 1 0 1

2 2 2 2 2
0 1 0 1
2 2 4 2 2 4

0 1 0 1 0 1
3 2 2 3

0 1
2 2 2

0 0 1
4 2 2 3

0 1
2 4

0 0 1
5

(1 )(1 )
4 2( )

(1 )(1 )
2

(2 )3 (1 )(1 )
4 ( )

( 3 )(1 )(1 )
4 ( )

(3 (1 )(1+ )
2

i

i

r rPA p
r r r r

r r r rPA p
r r r r

r r r r r rPA
r r

r r rPA
r r
r r rPA

 

 

 

 

 

   
 

    
 

 
  




  




  

2 2 2
0 1

2 2 3
0 1

2 4 4 2 2
0 1 0 0 1

6 2 2 3
0 1

2 )
( )

(3 )(1 )(1 )
2 ( )

r r
r r

r r r r rPA
r r
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where σcθ and σθ are the circumferential normal 
stresses of lining structure and surrounding rock, 
respectively; τcθ and τθ are the shear stresses of lining 
structure and surrounding rock, respectively; Gc and G 
represent the shear moduli of lining structure and 
surrounding rock, respectively; κc and κ are the Poisson’s 
ratios of lining structure and surrounding rock, 
respectively.  

3 Example Verification and Finite 
Element Analysis  
In order to verify the correctness of theoretical solutions 
given in this study, the theoretically derived results will 
be compared with the finite element calculation results.  

3.1 Analytic calculation results  

In the calculation, the parameters were selected as 
follows: The outer radius and inner radius of lining were 
r0=2.4 m and r1=2.05 m, respectively, the internal 
pressure of cavern was pi=10 MPa, the vertical pressure 
at cavern top was P=6.3 MPa, the elasticity moduli of 
surrounding rock and lining structure were E=5 GPa and 
Er=30 GPa, respectively, the Poisson’s ratios of 
surrounding rock and lining structure were κ=0.32 and 
κc=0.2, respectively, and the lateral pressure coefficient 
of surrounding rock was λ=0.47.  

Figure 2 presents the radial and circumferential stress 
distributions within the lining range at the angle of θ=90°. 
It could be known that the maximum circumferential 
tensile stress of lining was 29.33 MPa, appearing at inner 
side of lining top. With the increase in the radius r, the 
circumferential tensile stress of lining was gradually 
reduced, and that at the outer side of lining was 16.84 
MPa. Under the radial compression of lining, the radial 
pressure inside the lining was equivalent to internal 
pressure (10 MPa) of cavern. As the radius was increased, 
the radial pressure gradually declined, and that at the 
outer side of lining was 5.14 MPa. The radial stress and 
circumferential stress distribution laws of lining at 
different angles are presented in Figure 3-Figure 4. It 
could be observed from Figure 3 that the radial stress of 
lining changed little with the angle, the internal surface 

pressure of lining was closely related to the change of 
angle. On the internal surface of lining, the 
circumferential tensile stress was the maximum (about 
29.33 MPa) at the apex of arch (θ=0°). On the external 
surface of lining, the circumferential tensile stress 
reached the maximum value of about 23.98 MPa at the 
arch foot (θ=180°).  

The radial stress and circumferential stress 
distributions laws of surrounding rock at the angle of 
θ=90° are shown in Figure 5. It could be seen that the 
circumferential tensile stress of surrounding rock was 
2.49 MPa under r=2.4 m. As the radius was increased, 
the circumferential tensile stress of surrounding rock was 
gradually reduced, declined to 0 nearby r=2.8 m, and 
then was turned into compressive stress. When r tended 
to be infinite, the circumferential tensile stress of 
surrounding rock tended to be λp=2.96MPa, according 
with the assumption of boundary conditions. When the 
surrounding rock was under radial compression, the 
radial stress of surrounding rock was -5.14 MPa under 
r=2.4 m, being equivalent to the radial stress at the outer 
side of lining, this conformed to the assumption of 
lining-surrounding rock contact. With the increase in the 
radius, the radial pressure of surrounding rock was firstly 
reduced and then increased. As r tended to be infinitely 
great, the radial stress of surrounding rock was 
approximate to p=-6.3 MPa. Figure 6-Figure 7 give the 
radial stress and circumferential stress distribution laws 
of surrounding rock at different angles. It could be 
observed that the radial stress of surrounding rock was 
always compressive stress, which was firstly increased 
and then decreased with the change of angle. The radial 
stress of surrounding rock reached the maximum value at 
θ=180°. As the angle was enlarged, the circumferential 
stress of surrounding rock was transformed from tensile 
stress into compressive stress and then into tensile stress 
again, and the circumferential tensile stress was the 
maximum (about 1.7 MPa) at θ=0°.  

Figure 8 displays the change laws of maximum 
tensile stress of lining under different internal pressures. 
It could be seen that as the internal pressure was 
increased, the circumferential stress of lining presented 
an approximate linear growth, and the maximum 
circumferential stress of lining was gradually 
transformed from compressive stress into tensile stress 
under about pi=5 MPa.  
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Figure 2: Stress Distribution of Lining Structure 
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Figure 3: Radial Stress Distribution of Lining at Different 

Angles 
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Figure 4: Tangential Stress Distribution of Lining at Different 

Angles 

2 4 6 8 10 12 14 16 18 20

-6

-4

-2

0

2

σ/
M

Pa

r/m

 径向应力
 环向应力

 
Figure 5: Stress Distribution of Surrounding Rock 

0 60 120 180 240 300 360
-5.6

-5.4

-5.2

-5

-4.8

-4.6

-4.4

σ/
M

Pa

φ/°

 r=2.5m
 r=3.0m
 r=3.5m

 
Figure 6: Radial Stress Distribution of Surrounding Rock at 

Different Angles 
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Figure 7: Tangential Stress Distribution of Surrounding Rock at 

Different Angles 
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Figure 8: Maximum Tensile Stress of Lining under Different 

Internal Pressures 

3.2 Finite element simulation  

The finite element modeling and calculation were 
conducted via ABAQUS to simplify this into a 2D planar 
strain problem. The modeling was done within the xy 
plane, the boundary of axis x in the model ranged from 
-30 to 30, and the boundary of axis y ranged from -30 to 
30, too. The mesh generation was realized within the 
whole model plane, the mesh elements were four-node 
bilinear plane stress quadrilateral elements, totaling 
6,952 elements.  

The boundary and loading conditions were set as 
follows: The left and right sides of the model constrained 
its displacement in the direction x, and the model bottom 
constrained its displacement in the directions x and y; a 
vertical load of P=6.3 MPa was set at the top of model, 
the internal pressure of q=10 MPa was applied inside the 
cavern, and the gravity of model was not considered, as 
shown in Figure 9.  
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Figure 9: Boundary Conditions of Model 

 
The idea and procedures of finite element calculation 

are as follows:  
(1) Establish the components representing the 

underground circular tunnel and lining, and generate the 
suitable meshes; 

(2) Set tangential smooth contact under the only 
existence of normal contact between the lining and 
surrounding rock; 

(3) Apply displacement boundary conditions and 
corresponding load; 

(4) Operate the calculation.  

 
Figure 10: Maximum Principal Stress Distribution 

 
Figure 11: Minimum Principal Stress Distribution 

The maximum principal stress distribution laws of 
surrounding rock and lining structure, which are 

calculated through the finite element method, are 
displayed in Figure 10. In ABAQUS, the tensile stress 
was positive and compressive stress was negative. It 
could be known that the maximum tensile stress borne by 
the lining structure was 28.37 Mpa, appearing at the side 
close to the cavern on the top of lining structure. Figure 
11 shows the minimum principal stress distribution laws 
of surrounding rock and lining structure, which are also 
calculated through the finite element method. As shown 
in the figure, the maximum compressive stress of lining 
was about 9.98 Mpa, which accorded with the set initial 
loading condition. The minimum principal stress of 
surrounding rock presented a “butterfly”-like distribution, 
the radial compressive stress of surrounding rock was 
reduced obviously at upper and lower positions, and 
along the directions of positive and negative 45°, the 
radial compressive stress of surrounding rock changed 
uniformly.  

The maximum tensile stress distribution of lining 
along the apex of arch is shown in Figure 12. It could be 
seen that both theoretical solution and numerical solution 
of tensile stress reached the maximum values (29.33 Mpa 
and 28.31 Mpa, respectively) on the internal surface of 
lining. As the distance from the center of cavern was 
enlarged, the maximum tensile stress of lining was 
gradually reduced, and the theoretical solution differed 
little from the numerical solution all the time, so they 
could be mutually verified.  

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4

18

20

22

24

26

28

30

σ/
M

Pa

r/m

 理论解
 数值解

 
Figure 12: Comparison of Maximum Tensile Stress of Lining 

3.3 Extended finite element simulation  

According to the finite element modeling process in 
section 3.2, the extended finite element simulation was 
still done in ABAQUS. 

The extended finite element (XFEM) was formally 
proposed by Professor Belytschko of U.S. Northwestern 
University in 1999 [16-17]. It follows such idea: The 
discontinuous displacement in the crack propagation is 
described by introducing a nonlinear function nearby the 
cracks. 

The XFEM method forms a unit decomposition 
function on the solution domain through the finite 
element shape function, defines the displacement mode 
nearby the node xi, and approximates the infinite 
dimensional problem into a finite dimensional problem, 
and the displacement on the solution domain is 
approximately expressed as follows:  

 Theoretical solution 
Numerical solution 
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     app i ij j
i j

u x N x p x         (8) 

where uapp is the displacement at any point in the domain, 
i is the unit domain of crack influence, Ni(x) is defined as 
a group of shape function on the influence domain, βij is 
the nodal displacement in the influence domain, and pj(x) 
is a group of base function in the influence domain. In 
the XFEM, the displacement jump (discontinuous) in the 
crack propagation is usually characterized using the 
Heaviside step function, and the singularity of stress field 
at crack tip is characterized using the Westergaard 
function.  

The simulation parameters and process of ABAQUS 
XFEM referred to the analysis example in 3.1 and 
conventional finite element simulation in 3.2. Especially, 
in the simulation of lined crack tip, the fracture energy 
was GΙ

f =GⅡ
f =GⅢ

f=80N/m according to the theory of 
concrete fracture mechanics. It was assumed that the 
cracks were propagated only in the concrete lining [16-19].  

Figure 13 shows the displacement distribution laws of 
circular lining under the action of high-pressure gas and 
prefabricated cracks. It could be observed that the lining 
was mainly extruded in the vertical direction and pulled 
open in the horizontal direction, presenting a “flat duck 
egg” shape. The cracks at the top and bottom of lining 
were further propagated and stretched towards the deeper 
part along the already existing cracks, but no transverse 
cracks appeared, and the maximum opening 
displacement of the internal surface of lining was 0.93 
mm. 

The stress field distribution of circular lining under 
the effect of high-pressure gas and prefabricated cracks is 
shown in Figure 14. It could be known that due to the 
existence of cracks, the stress around the cracks reached 
as high as 94.77 MPa, with a strong stress concentration 
phenomenon, the stress at the part slightly away from the 
crack was approximate to the stress when the crack 
influence was not considered, and this was different from 
a viewpoint in the classical linear elastic fracture 
mechanics, namely, the stress at near end of crack tended 
to be infinitely great.  

 
Figure 13: Lining Displacement Distribution under Crack 

Propagation 

 
Figure 14: Maximum Principal Stress Distribution of Lining 

under Crack Propagation 

4 Conclusions  
(1) The derived analytical solution to the lined circular 
pressure tunnel under the nonhydrostatic pressure field 
can be reduced to the existing solution under the internal 
pressure of pi=0, the maximum circumferential stress of 
lining is closely related to the internal pressure pi, and 
with the increase of pi, the circumferential tensile stress 
of lining is increased rapidly, and a critical pressure 
exists. When pi is greater than the critical value, the 
maximum circumferential stress of lining is tensile stress. 
When pi is smaller than the critical value, the maximum 
circumferential stress of lining is compressive stress.  

(2) The analysis example and finite element 
numerical example both indicate that under the effect of 
high-internal-pressure gas, a large tensile stress will 
appear at the top of lining, where transverse cracks may 
be easily formed, which will result in the cracking failure 
of lining and shorten the service life of tunnel.  

(3) The XFEM simulation results manifest that under 
the joint action of nonhydrostatic pressure field and high 
internal pressure, apparent cracking will occur to the 
concrete lining, but the cracks fail to run through the 
lining. The largest open crack is about 0.93 mm, being 
0.2 mm larger than that specified in the seepage control 
requirement. It is suggested that the concrete cracking 
should be controlled by strengthening the reinforcement 
during the actual construction of underground internal 
pressure tunnel.  
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