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Abstract. Based on the influence of the non-linear change in the consolidation process of permeability 
coefficient and compressibility of soft soils and the theory of elliptic cylinders, derived the control equation 
of the nonlinear consolidation of the vertical foundation of the strip plastic drainage board. Further, 
according to the complete orthogonal space theory, the equivalent polynomial analytical expression of the 
nonlinear term is given. Then, the analytic solutions of the nonlinear consolidation are given, and through 
numerical calculation and verification analysis, it is considered that the Indrarantna (2005) approximation 
has a relatively small error at Cc/Ck (close to 1) and Nu (<4), but when Cc/Ck (difference from 1) and Nu are 
large (>4), the error is large.  

1 Introduction   
Based on the assumption that soil permeability and 
compressibility in the consolidation process are constant, 
Terzaghi [1] proposed a classical one-dimensional 
consolidation theory. However, the consolidation 
behavior of soft soil is complicated. Therefore, a series 
of researchers studied nonlinear consolidation theory. 
Davis & Raymond [2] firstly got an analytical solution 
for one-dimensional consolidation problem under 
instantaneous loading based on the assumption that the 
permeability coefficient kv and the volume compression 
coefficient mv changed synchronously. Soon after, 
Barden et al.[3] and Gibson [4] solved one-dimensional 
nonlinear consolidation theory with numerical methods 
based on different assumptions on the nonlinearity of 
soil unit. Mesri et al.[5] studied the one-dimensional 
large-strain nonlinear consolidation theory based on a 
series of simplification. Since then, many scholars have 
conducted in-depth researches from various aspects such 
as numerical analysis, laboratory tests and field tests. 
Lekha et.al [6] used approximate method solved a one-
dimensional nonlinear consolidation. 

As for the nonlinear consolidation of vertical drained 
foundation, Hansbo et.al [7] considered the non-linearity 
of the permeability coefficient in the consolidation 
process, analyzed exponential relationship between 
hydraulic gradient and penetration velocity. Indrarantna 
et al. [8] used the relationship between e~log σ’ and e 
~logkv to determine the relationship between the 
compression coefficient Cc and the horizontal 
permeability coefficient kh ,and then got an analytical 
solution for the consolidation of vertical drained ground.   

Considering the real size of plastic vertical drain, 
Huang et al. [9] gained an analytical solution for the 

consolidation of vertical drained ground with a 
assumption that the PVD shape is a elliptic cylinder 
instead of cylinder. Lu et al. [10] analyzed the nonlinear 
consolidation of vertical foundations with the 
approximate method. 

Thereby, a nonlinear consolidation controlling 
equation based the elliptic cylinder assumption for 
vertical drain considering the non-linear change of 
permeability coefficient and compressibility of soft soil 
during the consolidation process is derived. Legendre 
polynomial space theory is applied in the following to 
solve this equation. 

2 Description of physical model and 
assumptions   
Because of the advantages of fast construction, good 
permeability and low cost, prefabricated vertical drain is 
most widely used among different drain materials in soft 
soil ground improvement. Fig. 1 is the equivalent 
calculation model for the elliptical cylinder of PVD [9]. 
In the figure, L is the calculation length of the drain; ρw 
is the length coordinates of the elliptic cylinder drain; ρs 
is the length coordinates of the confocal elliptic cylinder 
smear zone; ρe is the length coordinates of the confocal 
elliptic influence area of the drainage body; u is the 
excess pore water pressure in soil; kw is the permeability 
coefficient of drain; kh is the radial permeability 
coefficient of soil; ks is the permeability coefficient of 
smear zone soil. 

The basic assumptions are as follows: 
(1) Equal strain assumption, the vertical deformation 

of the same depth between drain and surrounding soil 
layer are equal. 
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(2) Only the normal flow in the ellipse unit is 
considered; the seepage in soil is consistent with Darcy's 
law; well resistance is ignored in drain well. 

(3) The permeability coefficient of soil in the smear 
zone is changed synchronously with the permeability 
coefficient of the original soil area, ks/kh is a fixed value. 

(4) The top surface is permeable, while the bottom 
surface and the periphery of the vertical drain foundation 
is impervious to water. 

(5) The consolidation by radial flow and vertical flow 
can be considered separately according to Carrilo's law. 
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（a） Calculation model   
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        （b）  Elliptical coordinate system in ρ and θ coordinates 
Fig.1.  Diagram of unit cell with elliptic cylinder assumption 

on PVD  

3 Basic equations and solution 
conditions  

3.1 Constitutive relations 

According to Mikasa[5], the relationship between the 
void ratio e, permeability coefficient kh and effective 
stress σ’ is： 
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where Cc and Ck are the compression index and 
penetration index of soil, respectively; e0 and σ0’ are the 
initial void ratio and initial effective stress; kh0 is the 
initial permeability coefficient. 

According to the effective stress principle, there is 
0 0' ' p u                           (3) 

Assuming the distribution of additional stress is 
constant along the depth direction, then 
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where u  is the pore water pressure; 0uR u p . 
  Then it can be obtained that 
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3.2 Balance equation and continuous equation 

According to the theory of elliptical cylindrical 
coordinate system (Fig. 1), the basic foundation 
consolidation equation of the elliptic cylinder drainage 
body is obtained. 

Balance equation: 
v

v
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                            (6) 

Continuous equations for the soil in smear zone and 
undisturbed area: 
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，

  (7) 

where mv is the volume compression coefficient; εv is 
the volume strain; u is the excess pore-water pressure; γw 
is the water bulk density; t is the consolidation time. 

The above equation (6) and (7) are the basic 
consolidation equations in the elliptical cylindrical 
coordinate system. 

3.3 Controlling equations 

From the assumption of equal strain, εv is independent of 
ρ, and according to the biaxial symmetry of the ellipse 
and the excess pore pressure solution, it can be expressed 
as     cos 2u f g    .  Substituting it into equation (7), 
then it can be obtained that 
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This ordinary differential equation can be solved by 
separating variables method as: 
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According to the boundary conditions: 
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, the excess pore 
water pressure in the smear zone and the nature soil area 
can be solved, as shown in Huang et al. [9]. 
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According to the principle of integral average, the 
average excess pore pressure at any depth in the 
foundation can be expressed. Then it can be calculated as 
follows 
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Equation (10) is the deduced controlling equation 
that ignored well resistance of PVD with elliptic 
cylindrical assumption. Parameter Fh can be calculated 
by the basic parameters ρw , ρs , ρe, a, and k h/k s . The 
calculation process is attached in Huang et al. [9]. 

Substituting equation (5)、 (6) into equation (10) , 
and combining 

0
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(11)   
Assume a dimensionless time parameter ：
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The above equation (12) is the basic equation for the 
nonlinear consolidation of the PVD foundation in the 
elliptical cylindrical coordinate system without 
considering the well resistance. 

4 Nonlinear equation solving 
According to the nonlinear control equation (12) can be 
transformed into： 
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In this paper, the rigorous analytical solution of 
equation (13) is given based on Hillbert's complete 
orthogonal space theory in functional analysis.Let 
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In turn, nonlinear equation (13) can be transformed 
into: 
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The non-linear item on the right side of (19) 
is:     / 11 . c kC C

u u u uG R N R N    ,when 0<Ru<1,The 

function G（Ru）about Ru is extended from the interval 

[0,1] to the even function in the complete Legendre 
polynomial space [-1,1]. 

According to Hillbert orthogonal complete space 
theory, the Negejronde polynomial orthogonal can be 
represented by the Legendre polynomial equivalent: 
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Then equation (14) can in turn be transformed into: 
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According to the orthogonal inner product 
relationship, it can be seen that the formulas a0, a2, a4 
can be given as: 
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Then we can give the analytical expressions of the 
parameters a0, a2, a4 about the constant 
parameters 0

0 'u
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The Legendre polynomials P0(x), P2(x), and P4(x) are 
substituted into equation (16). The following simple 
equations can be obtained by simple changes: 
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According to equation (20) deduced in this paper, we 
can give an analytical solution, as follows 
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(22) 
Among them, total average degree of consolidation 

U=1-Ru. So far, the equivalent analytical solution of the 
nonlinear consolidation of shaft foundations has been 
given, that is, the relationship between the degree of 
consolidation, the dimensionless time factor T, and the 
analytical solution.  

5 Verification and discussion 

5.1  Verification  

In order to compare and analyze the relationship between 
the nonlinear consolidation analytical solution (22) in 
this paper and the nonlinear consolidation approximate 
solution in B Indraratna (2005) under ideal shaft 
conditions, this paper compares and analyzes the 
following calculation conditions: 

Condition（a）： Cc/Ck=1, Nu=20,Fh=8;   
Condition（b）：Cc/Ck=0.2, Nu=10, Fh=8; 
Condition（c）：Cc/Ck=0.2, Nu=20,Fh=8； 
Condition（d）：Cc/Ck=1.95, Nu=10,Fh=8； 
Condition（e）：Cc/Ck=1.95, Nu=20,Fh=8； 
Condition（f）：Cc/Ck=2.95, Nu=20,Fh=8； 
It can be seen from Fig.2 that when Cc/Ck→1, the 

analytical solution of nonlinear consolidation in this 
paper degenerates to classic linear consolidation. At this 
time, the analytical solution in this paper is consistent 
with the calculation results of Indraratna et al. 
[8]approximation method, and is consistent with the 
accurate numerical solutions. 

5.2  Discussion 

Through the comparison of numerical calculations under 
the above different conditions： 

(1) The analytical solution in this paper degenerates 
into an analytical solution similar to an ideal shaft when 
cc/ck approaches1, which is consistent with the 
Indrarantna[8] approximation, but without the 
dimensionless parameters Fh, the main reason is that the 

difference between the shape of the strip-shaped plastic 
drainage plate and the circular sand well is larger. 

(2) The larger the relative value of the pre-loading 
force Nu is(Nu =10), the deviation of Indrarantna[8] 

approximation and the exact numerical solution is larger 
even the degree of consolidation error as high as 
30%when Cc/Ck deviates from 1 and gradually 
approaches 0.2, The results of the special Indrarantna[8] 

approximation seriously overestimate the nonlinear 
consolidation rate of shaft foundations when the degree 
of consolidation is less than 90%. In contrast, the results 
of the analytical solution in this paper are basically the 
same to the exact numerical solution. 

(3) The larger the relative value of the preloading 
force Nu is (Nu =10), the deviation of Indrarantna[8]  

approximation and the exact numerical solution is larger 
even the degree of consolidation error as high as 40% 
when Cc/Ck deviates from 1 and gradually approaches 2. 
The results of the Indrarantna[8] approximation seriously 
overestimates the nonlinear consolidation rate of the 
shaft foundation especially when the degree of 
consolidation is less than 95%. In contrast, the results of 
the analytical solution in this paper are basically the 
same to the exact numerical solution.  
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solutions 

6 Conclusion 
Firstly, based on the theory of elliptic cylinders, 
considering the nonlinear influence of permeability 
coefficient and compressibility of soft soil in the 
consolidation process, the the nonlinear consolidation of 
shaft foundation is discussed.   

Secondly, derived the control equation of the 
nonlinear consolidation of the vertical foundation of the 
strip plastic drainage board. Further, according to the 
complete orthogonal space theory, the equivalent 
polynomial analytical expression of the nonlinear term is 
given. Then, the analytic solution of the nonlinear 
consolidation degree are given respectively. 

Thirdly, through numerical calculation and 
verification analysis, it is considered that the Indrarantna 
(2005) approximation has a relatively small error at 
Cc/Ck (close to 1) and Nu (<4), but when Cc/Ck 
(difference from 1) and Nu are large (>4), the error is 
large . 

Finally, it is recommended to conduct follow-up in-
depth research on the nonlinear consolidation of the shaft 
foundation under the influence of well resistance. 
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