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Abstract. This article considers the method of developing an evader 

control strategy in the non-linear differential pursuit-evasion game 

problem. It is assumed that the pursuer resorts to the most probable control 

strategy in order to capture the evader and that at each moment the evader 

knows its own and the enemy’s physical capabilities. This assumption 

allows to bring the game problem down to the problem of a unilateral 

evader control, with the condition of reaching a saddle point not obligatory 

to be fulfilled. The control is realised in the form of synthesis and 

additionally ensures that the requirements for bringing the evader to a 

specified area with terminal optimization of certain state variables are 

satisfiedt. The solution of this problem will significantly reduce the energy 

losses for controlling an unmanned vehicle, the possible effect is to save 

15-20 % of fuel with a probability of 0.98, to solve the problem of chasing 

the enemy. 

1 Introduction 

[1-4] presents a method of an optimal evader control strategy in the pursuit-evasion game 

problem, which does not require attaining the global extremum and complying with the 

condition of reaching a saddle point. The method was developed based on, first, the as-

sumption that the evader knows its own and the enemy’s physical capabilities and, second, 

on the condition that the enemy resorts to the most probable strategy in order to intercept 

the evader. The above assumptions made it possible to determine an optimal evader control 

strategy in the analytical form in the non-linear differential game problem. The final values 

of some of the evader’s state variables were terminally limited, and the total time for solv-

ing the game problem  kttt ,0  was assumed to be preset and fixed. 

At the same time, it is known that finite values of phase variables are not always possi-

ble to reach within a given time period const0  ttT k
 in control problems [5-7]. In this 

case, having performed an effective evasive manoeuvre, the evader may not have enough 

resources to deliver the useful load to the specified area. Accordingly, the condition of the 

fixed time interval T set in [1] may make it principally impossible to reach terminal values 

in certain subproblems, which substantially reduces the practical value of the approach sug-

gested in [1]. 
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Besides, additional requirements of terminal optimization may be set for certain state 

variables of the evader. E.g., for many practical applications, the evader’s trajectory is to 

satisfy the requirements of passing through a given terminal area with optimization of cer-

tain functions of state variables at a finite time period. The method presented in [1-4] also 

does not provide the possibility of terminal optimization of certain evader’s state variables. 

To this end, below is presented the method of developing an evader control strategy in 

the nonlinear differential game problem, which factors in an additional condition requiring 

the evader to be brought to a given area with the optimization of certain state variables for 

an arbitrary time period var0  ttT k
. The developed method, as well as that presented 

in [1], does not require reaching the global extremum, but rather takes an approach which 

sorts criteria by preference [1, 4, 6, 8]. It was again assumed that at every moment the 

evader knows its own physical capabilities and those of the pursuer, and the optimal control 

laws are admissible and unique, at least for all time values preceding the moment of the 

encounter. 

The problem statement and the assumptions adopted distinguish the problem from the 

classical pursuit-evasion conflict problems of the differential game theory [6]. 

2 Problem Formulation  

The current position of the evader is determined by phase vector  ty , and the enemy’s po-

sition – by vector z(t) ( nRy , mRz ). The dynamics of both objects in the phase space is 

described by the system of nonlinear differential equations [4]: 

   tzyugtyf
dt

dy
uy ,,,,  ,     00 yty  ;                          (1) 

   tyzvgtzf
dt

dz
vz ,,,,  ,    00 ztz  ,                              (2) 

where 
yf ,

zf ,
ug ,

vg  are known continuous functions of their arguments that can be differ-

entiated enough times; u, v are control functions  ;, pr RvRu   kttt ,0  is an inde-

pendent variable – time; y0, z0, 0t  are the initial conditions and the initial time of the eva-

sion game, known to the evader in advance in line with the above assumption; 
k

t  is a non-

preset finite instant of time. 

Consider the constraints on n1  nn 1
 state variables of the evader’s phase vector are 

described in the form of the equalities [6, 9, 10, 11, 12] 

  iki y~ty   or     0,~  kiiki tyyty ,  
11 n,i  ,                         (3) 

where 
iФ  is an 11 n  dimensional vector function and a requirement of terminal optimiza-

tion (suppose, maximization) of a certain known scalar function  

  knnnn tyyyL ;,...,,max
2111 211 

.                                       (4) 

is imposed on the rest of the 2n  nnn  21
 state variables. 

Then, in accordance with the generally accepted approach [4], we shall consider 
kt  an 

additional state variable limited by the inequality  

kk tt
~

 ,                                                             (5) 
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where 
kt

~
 is the maximum possible finite time determined by the evader’s physical capa-

bilities. 
The pursuer's goal is to minimize the distance between the players, while the evader’s 

goal is to maximize this distance. Therefore, during the entire time of the game, the vector 
control functions u(t) and v(t) must simultaneously provide optima (maxima and minima) 
of a certain given non-negative scalar function  ktzyL ;,2

 characterizing this distance. 

Thus, given the restraints on the control intensity   ttuk
kt

t

r

i

ii d

0
1

2




 and   ttvk
kt

t

p

j

jj d

0
1

2




, the 

search of optimal admissible strategies of the control of  tu  and  tv  
in the classical game 

setting must be carried out based on the condition that a saddle point for the maximin is 
reached [4,6-10] 

  tvuzyJ
vu

;,,,minmax ,                                            (6) 

               









kt

t

k ttuKtutvKtvtzyLtyLtvuzyJ

0

d
2

1
,,,;,,, 2

т

1

т

21

, 

where K1, K2 are symmetric, diagonal positively determined matrices of appropriate dimen-

sions, т is the transpose symbol, the functional  ktyL ,1
 is a terminal component of the 

Boltz functional and depends on the time of solving the control problem in the final section 

of the trajectory. 

3 The Method of Problem Solving 

Consider that it is necessary to find a solution only from the point view of one player – the 

evader. Then, using the known approach [1, 4, 6], we can bring the game problem (1) – (6) 

down to the problem of search of a control over the generalized dynamical system  tu  

   tvuxgtxf
dt

dx
,~,,,  ,    00 xtx  ;                                        (7) 

т

000 zyx  ;  
т

zyx  ;  
mnRx  ;  

т

zy fff  ;  
т

vu ggg  , 

where  tyzv ,,~  is the "best" function of control of the enemy player based on the feedback 

principle, with the enemy immediately taking advantage of any non-optimal evader’s move. 
The function  tyzv ,,~  is constructed in line with the method described in [1]. 

Then the optimal evader’s strategy  tu  is realized based on a narrower, compared with 

(6), condition 

  tzyvuJ
u

,,,~,max ,                                                      (8) 

considering the terminal conditions (3) – (5). In this case the Hamiltonian has the following 
form: 

            tuKtuttxvKttxvttxLttvutxH 2

т

1

т

2 5.0),(),(5.0),();(,~,,)(   

       tvutxgtttxft ;,),(),( тт   , 

 
 

 t
v

tvtxg
Kttxv v 

т

1

1

;),(
),( 















0 ,                               (9) 

3

E3S Web of Conferences 279, 01006 (2021)
EEESTS-2021

https://doi.org/10.1051/e3sconf/202127901006



       tttxHtvutxgtuKuttvutxH
uu

);(),(;,,)()(5.0min);(,,,)(min 2

т   , 

where the optimal phase trajectory  tx  and the vector of conjugate variables  t  are de-

termined by the adjoint equations of the canonical two-point boundary value problem 

       
 

 
 









































tttxH
t

tttxG
tttttxGttxf

dt

xd v

v

);(),();(),(

2

1
);(),(),(

т

тт  

 tttxf x );(),(  ,    
00 xtx  ,                                       (10) 

where 


 is the operation of block matrices multiplication introduced in [9]. 

 
    т

1

1

);(,)();(,)(
);(,)( 




















v

tttxg
K

v

tttxg
tttxGv


 , 

   
   

 
  


















































т

т

тт

2 ),(

2

1),(),(
t

x

ttxG
tt

x

ttxf

x

ttxL

dt

d v 
  

 
 tttxf

x

tttxH
);(),(

);(),(








 , 

   
 

















,,,1,

;

,,1,

211

1

1

k

i

k

i

ki
txxnnni

x

txL

ni

t



                         (11) 

 

1
 M ,  

where
   is a constant vector of 11 n  Lagrangian coefficients for terminal (geometrical) 

constraint (3).         

 
   

  

















kt

t

uu dtt
u

tuxg

u

tuxg
tM

0

т

т ;,;,


, 

where 
 
, M are 

1nn  , 
11 nn   dimensional matrices vector correspondingly. 

Optimal value  taking into account (11) presented in the following form: 

 
 

   
 




















kt

t

uu dt
u

tutxg
tKtu

u

tutxg
t

0

т

т

2

тт ;),(;),(
 ,    tuu  , 

   
 t

x

tutxg

x

tutxf

dt

d











































тт

;),(;),( ,       т
0Itk  , 

where I  is an 
11 nn  . identity matrix. 

The end time of the game 
kt  is found from the additional scalar equation 

 
  0);(,~,,)(

),(1 



k

k

k ttvutxH
t

ttxL
 ,                                  (12) 

where  ktjj   for ).(,~,),( tvutxj   
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The existence of the inverse matrix 
1

M  is determined by the condition of the evad-

er’s controllability. 
To solve the two-point boundary value problem (10) – (12) we use the approach sug-

gested in [3] allowing to pass to the one-point problem of integrating ordinary differential 
equations 

 
 

i

k
k

x

ttxL
ttxQ






);(
),( 1 ,    ktxx  ,                             (13) 

where  ttxQQ );(~  – given a non-negative scalar function , which characterizes the dis-

tance between the players. 
Given (13), (10) can be rewritten as follow: 

 
 

 
   






















1

211 ;),(~;),(~),(~
,),(~

~
tQtxMtQtxM

x

ttxQ
tQtxM

dt

txd  

 
     tQxftQxftQxf

x

txQ
xx ;,~;,~;,~;~


















 

.                    (14) 

The equations for the sensitivity matrices are characterized by the following formal rela-
tions: 

 
 

 
 

 tQtxM
tQtxf

tQtxM
x

tQtxf
tQtx

dt

dM xx ;),(~;),(~
;),(~;),(~

;),(~
21

1









 , 

  001 tM ;                                                     (15) 

 
 

 
 

 tQtxM
tQtxf

tQtxM
x

tQtxf
tQtx

dt

dM
;),(~;),(~

;),(~;),(~
;),(~

21

2













 , 

  MItM 02
,                                                  (16) 

21  , ММ  are sensitivity matrices; IM
 is an    mnmn   dimensional identity matrix, 

which results in receiving a suboptimal strategy of the ally  tx~  instead of the optimal 

strategy  tx . 

To solve the problem in the form of synthesis, we will further use the known method of 

constructing adaptive prognostic control [13], which will significantly simplify the synthe-

sized algorithm in comparison with the method presented in [1]. The method used here suits 

this problem because the time for solving it 
0ttT k   is not set in advance. An iterative 

procedure is constructed to search for a suboptimal solution  tx j~  in short time intervals 

 k

j ttt ,0  with constant recalculation of the current initial conditions   jj xtx 00   (where 

,2,1,0j is the iteration index). At each current interval, stabilization is performed only 

in respect of the found programme trajectory. The iteration interval – the frequency of re-

calculation of the predicted trajectory  tx j~  for the remaining time interval  k

j ttt ,0  – is 

determined by the dynamics of the objects, the power of the flight computer and other fac-

tors [11]. As the time interval for solving the problem decreases, the piecewise program 

control formed this way increasingly tends to control in the form of synthesis [13]. 

For example, we conducted a numerical simulation of the same practical pursuit-evasion 

example analysed in [1], where the objects are material points of unit mass moving along 

the horizontal axis under the influence of the controlling forces u and v: 
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21 yy  ,  uy 2
 ,  

21 zz  , vz 2
 ,                                     (17)  

 kttt ,0 , t0=0, tk=T, 

  101 y ,   002 y ,      000 21  zz . 

To examine the attainability of the final conditions with the time fixed 

const0  ttT k
, various values were set for terminal pairs of the evader’s coordinates 

        kk tyyyyyytyy ;,,,,,,;,
32122112121  ,  t0=0,   tk = Т= const.     (18) 

The assumption that, if the solution set forth in [1] is chosen, certain pairs of the end 

values  ktyy ;, 21
 from the set (18) will be out of reach after the evader y(t) carries out the 

manoeuvre of “evading” the pursuer z(t), was confirmed on the example of such a simple 

problem. The condition of fixing the time of solving the problem constT  may lead to its 

becoming principally impossible to solve. 

Further an additional condition of optimizing the evader’s velocity in the terminal point 

was set and the condition of the fixed time interval was eliminated: 

    kk
u

tytyL 221 ;max  ,     kttt ,0 ,   t0=0,   tk=T = var;    kk yty 11  .        (19) 

Computer simulation of a practical example was carried out in a mathematical package 

Mathcad 15. In this case, the mutual movement of two opposing objects in the lateral plane 

was simulated.  

Model realizations of evasion of the player-ally from the opponent are presented in 

figures 1, 2 (linear speeds of movement of objects and coordinates respectively). 

 

Fig. 1.  Linear velocities of objects 
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Fig. 2.  The Coordinates of moving objects 

 
The errors of bringing into the given terminal point of space and the errors of providing 

the given parameters of the movement of the ally player were 45% -50% less compared to 

the errors of the traditional method. 

The solution was realized in line with the method described above. It was found that the 

evader carries out the manoeuvre of “fleeing” from the enemy, then executes the operation 

of coming to any coordinate y1k from the set (4.2) with the maximum possible velocity y2. 

4 Conclusion 

The solution to the non-linear differential pursuit-evasion game problem was found based 

on the assumption of the most probable actions of the enemy in order to intercept the evad-

er and taking into consideration the both objects’ limited energy for manoeuvring. The ter-

minal optimization of the evader’s n2 state variables is ensured in the finite region of the 

phase space, which, in turn, is determined by the constraints in the form of equalities im-

posed on the remaining  nnnп  211
 variables. The results received in the simulation 

allow to conclude that the developed method is efficient. 

The issues of limited availability of energy resources for bringing the evader to the ter-

minal area were not considered. The solution of this problem will significantly reduce the 

energy losses for controlling an unmanned vehicle, the possible effect is to save 15-20 % of 

fuel with a probability of 0.98, to solve the problem of chasing the enemy. 
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