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Abstract. An initial boundary value problem is formulated for calculating 

the heat-mass-energy fields in a homogeneous wet plate. To solve this 

problem, an original algorithm containing elements of analytical and 

numerical methods has been developed. In this method, solutions are 

written using the spatially one-dimensional Green function of the 

Neumann problem, which contains eigenvalues and eigenfunctions of the 

Sturm-Liouville boundary value problem. In comparison with the known 

numerical algorithms, the problems of the theory of electromagnetic drying 

for which its application can be effective are indicated. It is shown that the 

discrete supply of microwave energy significantly reduces the gradients of 

temperature, steam and moisture content, while reducing energy 

consumption by 11...12 %. The probability of an undesirable spontaneous 

temperature increase at the end of the drying cycle is significantly reduced, 

and the electrical and thermal conditions of the microwave energy source 

are improved. 

1 Introduction 

The main difference between electromagnetic drying and convective and conductive 

drying, which currently produce up to 90 % of dry products in the food industry, is that heat 

is released not on the surface of the material, but through its volume to a certain depth. This 

reduces energy losses and increases the drying rate without the risk of overheating the 

product. In addition, electromagnetic technology is characterized by: the possibility of 

using any atmospheres and vacuum; selectivity in the multicomponent structure of the 

material; flexibility and high control accuracy due to the low inertia of the process, the 

ability to accurately dispense energy, the presence of several control channels; saving 

material and labor resources, improving product quality and labor productivity, reducing 

harmful effects on the environment. 

It is possible to fully use the advantages of electromagnetic methods of heating and 

drying only in the presence of mathematical models and means of their analysis, which 

provide a theoretical basis for the development of devices of this type and allow you to 

optimize their operation. Research on the process of drying by electromagnetic radiation is 
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given much attention in the literature on technologies in various industries. Studies of the 

drying process are performed using both analytical and numerical methods [1, 2].  

First, this is due to the fact that the drying tasks are set as nonlinear in most cases. 

Secondly, in the drying problems we always have a system of several desired functions, 

while in the Fourier method we are talking about initial-boundary value problems for only 

one desired function of coordinates and time. This creates a big problem, since in General it 

is impossible to obtain separate equations for each of the desired functions from a system of 

partial differential equations [3].  

To solve this problem, the idea of splitting the process by physical factors can be used 

[4]. In the article, a calculation scheme is proposed on the example of drying a 

homogeneous plate. 

2 A Mathematical Model of the Drying Plate  

The diagram of electromagnetic drying of a flat sample is shown in the figure. The 

condition of heat and moisture insulation of the lower surface of the plate means that the 

initial object of study is a plate with a thickness of 2d, which, due to the identity of the 

boundary conditions and irradiation conditions on the surfaces x=0 and x=2d, does not have 

heat and moisture flows through the plane of symmetry x=d. 

 

 

Fig. 1. Analogous to the acceleration of the pusher (a) and the radius of curvature of the cam profile 

(b) by the angle of its rotation: 1 - three-arc; 2-profiled on the basis of the numerical method 

The material consists of a solid base (capillary-porous body) and water. Let us assume 

the following approximation: the plate material is assumed homogeneous; plate thickness 

2d is small compared with its dimensions in directions perpendicular to the axis of x; the 

density of surface heat sources S caused by absorption of radiation with a small penetration 

depth and the heat transfer rate Q and the intensity of mass transfer J of the surface x=0 to 

the air weakly change along this surface, i.e., these quantities depend only on time t; the 

density of internal heat sources W caused by the absorption of penetrating electromagnetic 

radiation depends only on the x coordinate and time t. 

In the described situation, the distribution of temperature T and moisture content U will 

depend only on x and t, i.e. the desired functions will be T(x, t) and U(x, t). The initial 

boundary value problem for these functions will have the following form [6-8]: 
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Here c, ρ, k, γ, am, δ are the thermophysical characteristics of the material, such as 

specific heat capacity, density in the dry state, coefficient of thermal conductivity, 

evaporation criterion, moisture diffusion coefficient, relative coefficient of thermal 

diffusion of moisture; r is the specific heat of water vaporization; φT(x) and φU(x) are set 

functions that determine the distribution of temperature and moisture content at the initial 

time t=0. The intensity of heat and mass exchange of the sample surface with the air 

medium Q and J are uniquely determined by the surface temperature T(0, t) and are 

calculated 
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In these formulas: σ – the Stefan-Boltzmann constant; А
~

– the coefficient of thermal 

radiation; TB and ψ – the temperature and humidity of the air beyond the boundary layer; aw 

and am – the coefficients of heat and mass exchange of the sample surface with the air 

medium; P(T) – a function that models the dependence of the relative partial pressure of 

saturated water vapor on its temperature T at General normal pressure; T1=273°C and 

T2=238°C – constants. The intensity of heat exchange Q, according to (7), includes heat 

exchange by convection and heat exchange by radiation, and the intensity of mass exchange 

J, according to (8), is taken as Dalton's law of evaporation. 

3 The Algorithm of Procedure of Splitting  

Starting from the moment t=0, we will solve the problem on a small interval of time 

0<t<∆t. Using the given initial temperature distribution φT(x), calculate for t=0 the second 

term in the right part of equation (2) (denote it as  xfU ), and find using formulas (7) and 

(8) the intensity of heat and mass transfer Q and J on the surface of the plate at the same 

moment (denote them as Q0 and J0). Then, from the boundary conditions (3) and (4), we 

define at the same moment t=0 the normal derivatives of the fields T and U on the boundary 

x=0 (we denote them as μT and μU). The results will be as follows: 
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Returning to the field U(x, t) will not be taken into account in the propagation equation 

of moisture, (2) our small interval 0<t<∆t change in time derivative 22 xT   (0<x<d); we 

also assume small changes and the derivative ∂U/∂x in the boundary condition moisture 

content (x=0). Then to approximate the calculation of this field, we get the following initial 

boundary value problem: 
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This is a Neumann problem for an inhomogeneous parabolic equation with 

inhomogeneous boundary and initial conditions. You can solve this problem using the 

Fourier method. Assuming that this problem is solved, we calculate the derivative ∂U/∂t at 

all points x for t=0 and denote 

        xfcxWxtUr T 0,0,  

Then, ignoring the change in time and the last two terms in the right part (1), and the 

derivative ∂T/∂x at the boundary x=0, we get the Neumann problem for finding the 

temperature field T(x, t), similar to the one obtained above for the moisture content field: 
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Here   ckaw
 is the heat diffusion coefficient. 

Having solved this problem using the Fourier method, we find the temperature field as a 

function of coordinates and time. 

Thus, we have constructed a procedure for splitting the General initial-boundary value 

problem (1)-(8) for two functions T and U. Direct investigation of the General initial-

boundary value problem by the Fourier method cannot be performed.  

But for two separate problems (9) and (10), the Fourier method can already be applied. 

The validity of the constructed solutions U(x, t) and T(x, t) is limited by a small time 

interval 0<t<∆t. 

4 Solving the Neumann Problem 

In general, the initial boundary value problems (9) and (10) can be written as follows: 
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This is a one-dimensional Neumann problem for the diffusion equation in a 

homogeneous medium. Here a is the diffusion coefficient; f(x) and φ(x) are the given 

functions; μ1 and μ2 are the given numbers; Y(x, t) is the desired function. 

We solve this problem by using the eigenfunctions of the Sturm-Liouville problem and 

the apparatus of Green's functions. Based on [10], we present information from the theory 

of solving initial-boundary value problems that is necessary for our case. 
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The solution to the original problem (11) for the Y field is represented as a sum: 
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where the functions on the right side are found as solutions to other, simpler initial-

boundary value problems. Exactly, these problems have the same form (11), in which 

f=μ1=μ2=0 (the problem for Y1); μ1=μ2=φ=0 (the problem for Y2); f=φ=0 (the problem for 

Y3) is successively assumed. 

Solutions to problems for Y1 and Y2 look like this: 
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In these formulas, the Green function of the original problem (11) for the y field is used. 

According to [11], it has the following form: 
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As for the problem for Y3, its solution is sought in the form 
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Here Y  is the new desired function. Substituting function (15) in the Neumann problem 

for Y3, we get for Y  
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where 
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Now substitute the Green function (14) in formulas (13) and (17), and after completing 

the integration, write the final expressions for the functions Y1, Y2 and Y3. Calculations 

should be made at a sufficiently close to t=0 moment t=Δt. However, as it is accepted in the 

theory of drying, instead of Δt, we will introduce dimensionless time into the formulas. 
2* dtat   

Here is the final result: 
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In these formulas φn and fn, n=0, 1, 2, ... are the Fourier coefficients of functions φ(x) 

and f(x) in their series expansions by cosines on the segment [0, d]. For an arbitrary 

function y(x) , this decomposition has the following form [12]: 
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So, the solution of the Neumann problem (11) has the form (12), where the functions Y1, 

Y2 and Y3 are found by formulas (18)-(20). 

5 Discussion 

Let's list the main steps of the calculation algorithm. The function fU(x) and the number μU 

are calculated from the given initial distributions φT(x) and φU(x), and the Neumann 

problem (9) is formulated for calculating the field U(x,t). Having solved this problem, we 

calculate the function fT(x), the number µT and set the Neumann problem (10) to calculate 

the field T(x, t). It is solved in the same way as the previous problem. Then the functions 

U(x,t) and T(x,t) are calculated at the moment t=Δt close to t=0. The resulting x-coordinate 

functions are declared as initial distributions, after which the above algorithm for 

transitioning between neighboring layers in time is repeated. 

The solution to the Neumann problem has the form 

321 UUUU   

where the functions on the right side of this equality can be found by formulas that use 

higher-order approximations, where Y1, Y2, Y3 should be replaced by U1, U2, U3; φ(x), f(x), 

a, μ1 should be replaced by φU(x), fU(x), am, μU; take μ2=0. 

When switching to a new layer over time, the calculation is performed using formulas 

determined by the temperature and moisture content distributions on the previous layer over 

time. This makes the proposed calculation scheme fundamentally different from the 

standard procedures of grid methods, in which these distributions are included as arrays in a 

system of linear algebraic equations of high orders, which need to be solved in order to 

make the transition between layers in time.  

Calculations performed on a sample of wood with a humidity of 60 % show a high 

degree of uniformity of heating and a 2-fold decrease in the reflection coefficient. Thus, the 

power loss on reflection can be 5 ... 20 %. It is established that the gradients of temperature, 

steam, moisture content and the probability of internal overheating are reduced in the 

material, while reducing energy consumption by 11 ... 12 % and improving the thermal and 

electrical modes of operation of microwave energy sources. 

6 Conclusion 

A physical and mathematical model is developed that describes the interrelated processes of 

electrodynamics, heat, moisture, and steam exchange under the influence of a microwave 

field on a wet capillary-porous material in the system of a technological microwave 

chamber and allows us to study and predict the processes of microwave drying of materials. 

The research has been carried out and the regularities of the heat and moisture transfer 

processes under different modes of microwave drying have been established. It is shown 

that the discrete supply of microwave energy significantly reduces the gradients of 

temperature, steam and moisture content, while reducing energy consumption by 11...12 %. 

The probability of an undesirable spontaneous temperature increase at the end of the drying 
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cycle is significantly reduced, and the electrical and thermal conditions of the microwave 

energy source are improved. 

 
The reported study was funded by RFBR and the government of Volgograd region according to the 

research project № 19-48-340015 р_а. 
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