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Abstract. The mathematical model to describe the acoustic emission (AE) 

in a massive elastic body by radiating piecewise linear defect at the stage 

of its extension is considered. Problems of reconstructing the wave field in 

the body and analyzing characteristics of the defect by AE testing are 

discussed. The problem in question is reduced to the investigation of a 

boundary integral equations system. The model presented allows to raise 

the reliability of non-destructive testing results when estimating the 

exhaustible resource of equipment under long exploitation as one of the 

directions to solve the problem of energy saving and efficiency.  

1 Introduction 
Problems of estimating and predicting the exhaustible resource of the objects of 

technological equipment being in exploitation have been always of great interest for 

authorities. Problems mentioned above are of especial urgency when the replacement of the 

obsolete equipment by more modern one meets the serious spending that sometimes    may 

be non-evidenced to producing purposes. 

Contemporary ways for analyzing the industry objects of responsible purposes  under 

exploitation consist in using non-destructive testing techniques [1] in various worldwide 

spheres of  diagnostics of objects such as industrial and civil buildings, industrial piping  

systems, concrete bridges, nuclear power facilities [2-7] at al. Among these techniques  the 

acoustic emission (AE) method takes the especial place  when estimating the pre-

destructive stages of  exploited equipment material since AE method  permits to detect 

growing defects being  just the most dangerous[8,9].  

In the paper suggested the dynamic problem of steady vibrations arising in the massive 

elastic body is considered in a pre-destructive stage of its material under exploitation. The 

physical process of the acoustic radiation is studied in the stage of growing the inner  defect   

appeared earlier under loadings and formatting the tree graph-shaped defect (Fig.1). The 

only element of the defect resulted by growing the former one is assumed to be radiated 

that is well-known from experiments. The problem of the wave field reconstruction in the 

body is stated. Defects are simulated by linear cuts of finite length.  
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The mathematical statement of the problem in question leads to the mixed boundary 

value problem for the Helmholtz equation in the half-space with the radiating cut J . The 

statement is reduced, in turn, to the equivalent system of boundary integral equations 

(BIA). Solvability problems of equations are examined and the structure of its solution is 

established.  

To estimate radiating defect parameters, to fulfill mathematical modeling the wave field 

depending on radiating type, form and location of inner defect with its radiation 

characteristics. The simulation of the AE process described above is assumed to be a 

number of steps. It may be considered AE as determined process under antiplane 

deformation or  under plane deformation or under 3D deformation or considered AE as 

stochastic process ets. 

At present paper we consider but the initial step of modeling the AE process in a 

massive body under antiplane deformation in spite of existing the translational symmetry as 

the accessory product of that type of simulation.   However, it should be noted that such a 

model, first hand, use the simple mathematical technique and, from the other hand, allows 

to obtain the main qualitative results of investigating the problem in question. This 

modeling consists in the consideration of elastic antiplane oscillations by the inner tree 

graph-shaped defect J growing to the free boundary of a massive body.  

In the Fig.1 it is shown the defect 
22211211210 AAAAAAA  with its possible 

localization presented by the active radiating element
10 AA  and the passive rest 

2221121121 AAAAAA  of no radiating. The situation described above generates the 

mathematical model of the AE process within  the chosen  pre-failure stage. 

 

Fig. 1.  Radiating defect J in a massive body,       - oscillations of the element
10 AA are 

perpendicular to (x,y) plane 

 

The massive body is simulated  by  the elastic half-space   with unloaded boundary 

 . Radiating defect is presented  by the broken cut 
210 AAA  (Fig.2) consisting of  active 
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radiating element
101 AAJ   and the passive one 212 AAJ   of finite lengths 21 l,l  

with inclination angles 21 ,  to the  boundary   respectively.    

 

 

Fig. 2.  Radiating  broken cut 21 JJJ   

 

The point 
0A  being the nearest to the free boundary   is remote from it  on the distance 

h .  Shear displacements harmonic oscillation generators are  located but on cut boundaries 


1J  , ones are coherent, have the equal intensity , are given and   distributed  as 

 11 J)y,x(,)tiexp()y,x(f  ,   is the circular frequency. Displacements of the cut 

boundaries 

2J  are assumed to be equal zero. Amplitudes of outgoing displacement waves 

in   vanish at infinity. The problem in question is to reconstruct the wave displacements 

field in the whole   under conditions listed above. 

2 Problem statement         

To solve the problem in question, to consider differential equations of the dynamic 

elasticity  [10]  in the half-space   with unloaded boundary   and cuts   
2,1J  of finite 

length forming the cut J . Representing the displacement oscillations in the form  

)tiexp()y,x(u)t,y,x(W                                              (1) 

we reduce the problem above to the mixed boundary value one about the unknown 

displacement complex amplitude  )y,x(u   in   as follows : 
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where D is the material density,  is the  shear modulus,   is the exterior  normal  to the 

boundary ∂Ω,  [u]J   is the function saltus  via the cut J.  In the formulae (2) conditions as 

r→∞ are Somerfield radiation ones [11, 12] of  waves propagation to the infinity  where its 
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amplitudes vanish. The solution of the boundary value problem (2) is considered as an 

element of Sobolev space )(W1
2   [13]. 

The method of investigating the mixed boundary value problem (2) is based on reducing 

one to the corresponding boundary integral equation system by constructing Green function 

),|y,x(G   for Helmholtz equation. Green function obeys the condition 

0/u 


 and Somerfield radiation condition (2). Hereby, there takes place the 

representation for the complex amplitude in the form of curvilinear integrals along right 

boundaries of cuts 
2,1J  :     

                      )y,x(,dl),(q),|y,x(G)y,x(u
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In the formula (3) functions  
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are dimensionless stress saltus 

via  2,1n,Jn   respectively. The unknown displacement field may be reconstructed after 

finding )y,x(q 2,1 . 

Let us place the observation point (x,y) on the cut boundaries 
2,1J  and go over to the 

local coordinates along the boundaries 
2,1J . To describe further results let us introduce the 

vector-function )r(f  as the extension of vector-function  
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interval  21 l,lmaxlr0  . Then we result the system of boundary integral equation 

(BIA) about unknown  2,1q  as follows:   
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In expressions (4) it is taken into account that   0q 2,1   out of the cuts, )z(Ê p is 

McDonald function [14], h  is the distance between the vertex 
0A  of the cut 1J  and free 

boundary . Quantities 020 ,L,R   appear when constructing Green function by reflection 

method known in diffraction theory [12]. 

3 Results and discussions 

Using summation formulae for McDonald functions permits to transform BIA system (4) to 

the form:   
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Expressions of components of matrixes 1,HH  are not adduced due to there 

awkwardness.   It points out  the left hand side of operator  K   in (5) may be represented as 

the  sum  SHK   generated by summands of the kernel        ,r,r,r shk  . 

Hereby, operator H    is uniquely inverted and operator S  is compact as operators acting in 

Sobolev-Slobodetsky   spaces 2,1n
2

1

2 n),J(W 
  of the fractional smoothness.  

Solution structure of  BIA system (5) may be taken  by [15] and has the representation 

as follows   (T  is transpose operator): 
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Contour Г2 is located upper )( 2,11    in the complex z-plane, )z(X 2,1 are 

unknown functions, )kr(K),kr(I iziz  are modified Bessel functions [14],   )(S 2  is 
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the space of vector-functions  zX ,  converging to zero together with the pour weight z  in 

a regularity strip 1R  of integrand matrix-function ).z(H  Matrix-functions  zH  are 

resulted  by  the factorization  zH  with   respect to real axis 1R .  

The proof of the representation (6) is based on results [15]. Subsequent substituting the 

solution (6) to the BIA system (5) adduces to the auxiliary integral equations system of the 

second type with compact operator in the space  2
3

2 ),(S   for searching the 

unknown vector-functions )z(X . It permits to make well-known conclusions about the 

solvability of the system.   

Compactness of the operator of that system allows to represent its operator  as  the sum 

of finite-dimensional and  infinitesimal ones.  This  fact  permits  to apply various   

numerical  methods   to  solve   the   equations   with   compact operators and hence to 

solve input boundary value problem (2). 
Reconstructing the wave field in the whole domain   with the defect J  may be 

fulfilled by the representation (3) and solution (6) of BIA system (5). In part,  to reconstruct 

the wave field in the free boundary , to tend the observation point )y,x(  to   in the 

representation (3). Fig.3 illustrates the result of evaluating the )y,x(),y,x(uRe   in 

the form of the amplitude-frequency response of  free boundary   of the half-space  

containing defect J (Material is Steel 20).  

 

 
 

         

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Frequency response for free-surface displacement amplitude: 

  1,5 l 54   (2);m105,0l,45)1( 1,2
o4

2,1
o  10–3 m 

 
The infinite amplitude values according to resonance frequencies are caused by the ideal 

elastic material in applied mathematical model. Furthermore, using the least square method 

allows to solve the inverse problems  of reconstructing  the unknown radiation amplitudes 

of the defect J  by ones measured on the free boundary   on the base of  AE diagnostics 

[16-19].  
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4 Conclusions 

1. Mathematical model offered to study AE process by piecewise linear defect allows to 

consider process of growing and accumulating the defects. 

2.  Investigating the model of AE process in details permits to connect theoretical 

results with  experimental data on processing and analyzing AE signals detected on the free 

boundary of a body. 

3. The way offered may be applied to consider inverse problems of reconstructing 

unknown physical parameters of the process of growing inner defects of a massive body on 

the base of analyzing the AE signals.  

4.  The development of the method presented may become the base on considering 

consequent stages of the mathematical simulation AE under plane and 3D deformation of 

the material both in determined process variant and the stochastic one.  

5.  The method offered allows to consider the problem of energy saving and efficiency 

by timely and reliable estimating the exhaustible resource of the technological equipment to 

prolong its exploitation.    
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