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Abstract. The dominant factor determining chemical industry objects’ 
durability is the corrosive wear of the stretched reinforcement and the 
compressed zone of concrete. The article presents a methodology and results 
of a numerical assessment of the residual life of the reinforced concrete frame 
beams of an industrial building operating in an aggressive environment. 
According to the full-scale engineering survey results, the most damaged 
frame structures - the beams of the intermediate floors were identified. The 
period of concrete protective layer complete neutralization, the degree of 
corrosion damage to the working reinforcement, the compressed concrete 
neutralized layer depth, the change in its strength characteristics with depth 
and the degree of its heterogeneity were determined by the field 
measurements using the standard and non-standard methods of non-
destructive testing. A linear law of the accumulation of corrosion damage to 
concrete in the compressed zone and the rate of corrosion damage in the 
working reinforcement after the concrete protective properties’ exhaustion is 
adopted. A normative design apparatus is used for the first group of limiting 
states in relation to the most loaded section. For an adequate assessment and 
prediction of the residual resource, the main emphasis is on experimental and 
diagnostic methods. 

1 Features of the bent reinforced concrete elements work under 
corrosive attack  
Really exploited industrial structures are in extremely difficult operating conditions. On the 
one hand, there is a relatively high level of operational loads and a fairly frequent change of 
technological equipment, on the other hand, the presence of various aggressive media (gas, 
liquid, etc.). In addition, the technology of operating the supporting structures is often 
practically absent, i.e., in fact, there is a high level of corrosive effects with a practical absence 
of measures for anti-corrosion protection. 
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The numerous field examinations’ results of the structures under these conditions showed 
that the dominant factor that reduces the structures’ actual life is the corrosive wear of the 
stretched reinforcement and the concrete compressed zone. 

At the same time, there are often no external signs of the limiting states onset, both of the I 
group of states and of the II (the formation of plastic hinges, cracks with an opening width of 
more than 0.1 mm, significant deflections, etc.). However, at the same time, there is a 
significant corrosive wear of the longitudinal reinforcement cross-sectional area, damage to 
the concrete protective layer, changes in the deformation and strength characteristics of 
concrete, a decrease in the cross-sectional area of the concrete compressed zone. It should be 
noted the extreme heterogeneity of corrosion damage in various zones, even within a single 
structure, which is associated with the level and nature of these zones’ stress-strain state, as 
well as with the intensity and nature of the local corrosion impact. That is, in real conditions, 
the stress-strain state is a factor that controls the concrete and reinforcement corrosive wear 
degradation processes rate and nature. 

With the corrosive wear of concrete and reinforcement, a redistribution of the stress-strain 
state occurs (SSS) separate the zones within the structure against the background of a constant 
increase in its relative level. In this case, the onset of the limiting state of groups I and II is 
possible when a certain level of concrete and tensile reinforcement SSS compressed zone is 
reached, while maintaining the possibility of their joint work. 

For statically indeterminate structural systems, the situation is further complicated by the 
fact that there is also a redistribution of efforts between the individual structures and groups 
with the corrosive wear accumulation.  

The course nature and corrosion rate can be influenced by many factors: the physical and 
chemical parameters of the environment, the magnitude and nature of the structures’ stress-
strain state and the features of their operation. Mathematical modeling of the process of 
reinforced concrete structures’ corrosion destruction is a very difficult problem, which remains 
completely unsolved at present. 

The theoretical foundations for modeling the structures’ interaction processes with the 
environment, calculating their durability are laid down in [1], the design of the reinforced 
concrete engineering structures’ durability, taking into account degradation processes in 
concrete and reinforcement under the action of various aggressive media in a deterministic and 
probabilistic setting, is considered in [2]. Currently, a large number of studies are devoted to 
the experimental study of the processes of corrosion in concrete and reinforcement [3-7], as 
well as the measurement of the corrosion rate directly in real time [8, 9]. Methods of 
probabilistic modeling of concrete and reinforcement wear and destruction during the 
propagation of corrosion and calculation of the reinforced concrete structures’ reliability are 
considered in [10-13]. 

This paper presents a methodology for assessing the resource of bending reinforced 
concrete structures based on the results of their experimental and diagnostic studies and the 
use of engineering models adopted in the current regulatory documents. 

2 Characteristics of an operating industrial building and operating 
conditions of load-bearing structures 
The surveyed structure is a three-storey open independent stack-frame of dimensions in terms 
of 30x15 m and a height of 25 m. The operating time of the structure is 30 years. General view 
and structural diagram of the structure are shown in Fig. 1. 
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The structure is designed as a building with a full frame, the first two floors are made of 
prefabricated reinforced concrete, the third floor is made of metal.  

Technological equipment is located on the overlap of the first and second floors, the 
operating load from which is 15 kN/m2. The main load-bearing structures are exposed to the 
direct influence of the external environment (temperature, humidity, etc.). Individual zones are 
subject to regular soaking, freezing and thawing. 

 

 
Fig. 1. General construction scheme 

The technological process involves the use of recycled water, part of which is regularly 
spilled onto the supporting structures of the floor. The composition of circulating water 
includes, according to the laboratory, the following components that are aggressive towards 
reinforcement and concrete: pH – 7,5; COD – 80,8 mg/l; hydrogen sulfide – 0,34 mg/l; 
alkalinity – 2,2; petroleum products – 51,4 mg/l; dry residue – 33,8 mg/l; calcium hardness – 
2,6 mg/l; overall hardness – 3,6 mg/l; chlorides – 43,6 mg/l; mechanical impurities – 22,5 
mg/l; iron – 0,66 mg/l. 

3 Results of full-scale engineering survey of reinforced concrete 
beams of intermediate floors 
During the engineering survey, the study and registration of the beams’ state characteristic 
external signs (the presence of damaged zones, cracks, etc.) was carried out; determination of 
the concrete wear, reinforcement, strength characteristics of concrete and the degree of its 
heterogeneity; the presence, location and orientation of cracks in the selected zones were 
recorded. 
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Based on the results of a full-scale engineering survey, it was established: 
– The greatest damage (III-IV category of the technical condition assessment [14]) was 

found in reinforced concrete beams located at 7.00, i.e., in the overlap of the 1st floor: 33% for 
the beams B-4 and 10% for the beams B-18 (Fig. 2). This is primarily due to the circulating 
water technological spills’ intensity. 

– The greatest corrosion damage to concrete and reinforcement takes place in the zones of 
the highest tensile stresses in concrete, which is associated with the presence of the concrete 
structure significant loosening and, as a consequence, intensive capillary inflow of an 
aggressive medium (chlorides) into the reinforcement area.  

– Corrosion damage to concrete is mainly superficial to a depth of 40-50 mm in discharged 
zones and up to 20 mm of disposable surfaces. Moreover, in the zones of regular technological 
spills of technological water, the compressed zone concrete has an increased porosity to a 
depth of 40-50 mm, up to 9%, at 7.0% (pores with a size greater than 10x10-6 were taken into 
account by microscopic examination of the selected samples’ prepared surface). At the same 
time, the protective properties of concrete to a depth of 50 mm are sharply reduced. 

 
Fig. 2. Layout of the most damaged beams at the first-floor level, where 1 defines the beam B-
4; 2 defines the beam B-18 

4 Assessment of the bending elements’ individual residual life  
The reinforced concrete beams’ residual life of rectangular cross-section with double 
reinforcement is estimated under the following assumptions: 

1. The integrity of the structure is preserved, i.e., corrosion processes do not affect the 
areas that provide the working reinforcement anchoring.  

2. A normative calculation apparatus is used for the first group of limiting states in relation 
to the most loaded section. 

3. A linear law of corrosion damage accumulation in the working reinforcement after the 
exhaustion of the concrete protective properties is adopted.  

4. A linear law of the accumulation of corrosion damage to concrete is adopted after the 
end of the initial running-in stage, which corresponds to the concrete protective properties’ 
exhaustion in relation to reinforcement. 

4

E3S Web of Conferences 281, 01011 (2021)	 https://doi.org/10.1051/e3sconf/202128101011
CATPID-2021 Part 1



Based on the results of a full-scale engineering survey, it was established: 
– The greatest damage (III-IV category of the technical condition assessment [14]) was 

found in reinforced concrete beams located at 7.00, i.e., in the overlap of the 1st floor: 33% for 
the beams B-4 and 10% for the beams B-18 (Fig. 2). This is primarily due to the circulating 
water technological spills’ intensity. 

– The greatest corrosion damage to concrete and reinforcement takes place in the zones of 
the highest tensile stresses in concrete, which is associated with the presence of the concrete 
structure significant loosening and, as a consequence, intensive capillary inflow of an 
aggressive medium (chlorides) into the reinforcement area.  

– Corrosion damage to concrete is mainly superficial to a depth of 40-50 mm in discharged 
zones and up to 20 mm of disposable surfaces. Moreover, in the zones of regular technological 
spills of technological water, the compressed zone concrete has an increased porosity to a 
depth of 40-50 mm, up to 9%, at 7.0% (pores with a size greater than 10x10-6 were taken into 
account by microscopic examination of the selected samples’ prepared surface). At the same 
time, the protective properties of concrete to a depth of 50 mm are sharply reduced. 

 
Fig. 2. Layout of the most damaged beams at the first-floor level, where 1 defines the beam B-
4; 2 defines the beam B-18 

4 Assessment of the bending elements’ individual residual life  
The reinforced concrete beams’ residual life of rectangular cross-section with double 
reinforcement is estimated under the following assumptions: 

1. The integrity of the structure is preserved, i.e., corrosion processes do not affect the 
areas that provide the working reinforcement anchoring.  

2. A normative calculation apparatus is used for the first group of limiting states in relation 
to the most loaded section. 

3. A linear law of corrosion damage accumulation in the working reinforcement after the 
exhaustion of the concrete protective properties is adopted.  

4. A linear law of the accumulation of corrosion damage to concrete is adopted after the 
end of the initial running-in stage, which corresponds to the concrete protective properties’ 
exhaustion in relation to reinforcement. 

5. The fittings of the compressed zone are practically not exposed to corrosion.  
At the time of the field survey, the following characteristics of the individual design are 

established.  
1. Geometric dimensions. 
2. The number, type and scheme of the most loaded sections reinforcement. 
3. The volume of the damaged concrete cover and the reinforcement corrosive wear 

degree. 
4. The depth of the compressed concrete neutralized layer and the change in strength 

characteristics with depth. 
5. The actual design scheme of a reinforced concrete structure work and the stress-strain 

state nature. 
6. Commencement of the facility commissioning and characteristics of corrosive 

environments.  
The corrosion damage filling rate assessment to reinforcement is carried out as follows. 
The period of complete neutralization of the concrete protective layer is determined 

experimentally by using several chemical indicators. Measurements are carried out in the 
zones of preserved concrete 1, 2, 3 near the neutral axis (Fig. 3). 

 
Fig. 3. Layout of damage in the beam B-4 along the axis 4/C-D. Longitudinal reinforcement does not 
correspond to the design; frames are offset to the side up to 60 mm 
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where 1y  is concrete cover; 2y  is the depth of the neutral concrete layer at the time of the 

survey; 2  denotes the time in years from the operation start to the examination moment. 
The assessment of the stretched reinforcement corrosive wear rate was carried out by 

means of full-scale measurement of the area of the remaining reinforcement: 
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where res

bA  is the residual concrete sectional area, taking into account the actually 

damaged concrete layer; bA  is the initial concrete area; 

Residual strength res
bR  concrete is determined taking into account the data of non-

destructive control methods (ultrasonic, mechanical), taking into account the data on the 
concrete samples’ porosity (cement stone), taken from different depths in a zone close to 
neutral. 

The establishment of the structure actual design scheme is carried out taking into account 
the acting loads analysis, the conditions for their transfer, the type of supported nodes, the 
existing cracking pattern analysis. If an external examination of the cracking picture is 
diagnosed with an insufficient reliability degree, non-destructive ultrasonic methods are used. 

After establishing the design model, we find the maximum bending moment M  in the 
most dangerous section, taking into account the actual loads. 

We estimate the residual life of the beams in the following order: 
We calculate the relative height of the concrete compressed zone in the most loaded 

section, taking into account corrosive wear: 
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where   is the duration of operation of the structure after the concrete has exhausted its 
protective function; snR  denotes the standard values of reinforcement strength in section; sA  

is a cross-sectional area of reinforcement at the time of commencement of operation; bnR  is 

the strength of concrete at the time of commencement of operation; 0,b h  are the initial 

geometric dimensions of the section; ,s bV V  denote the decline rate in the characteristics of 
reinforcement and concrete during corrosive wear. 

Ultimate bending moment perceived by the section taking into account corrosive wear: 
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Bearing capacity margin is the difference between effective moment М and the limiting 

moment perceived by the cross section: 
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at 0M   3  and residual design life T  are found, i.e., the time before the first group 

limiting state onset from the examination moment: 
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The beam B-4 (in axes 4/C-D) residual life estimation. 
General layouts of defects and damages in type beams B-4 are shown in Fig. 3. 
According to the field measurements, the concrete cover layer thickness is: 1 3.2y   cm 

± 0,3 cm; depth of neutralized concrete layer 2 5.6y   cm ± 0.5 cm. Time from the operation 

start to the examination moment is 2 30   years. 

By the formula (1), we calculate 1 9,8   years. We accept 1 10   years. 
The total area of the reinforcement at the time of the start of operation is equal to 

10.3sA   cm2, and the remaining total area of reinforcement at the time of the survey, 
obtained from the actual measurement data of the residual diameter of the reinforcement – 

res 8.2sA   cm2. Find the stretched reinforcement corrosive wear rate (2), which is on 

average for all rods 1.02sV   % in a year.  

7

E3S Web of Conferences 281, 01011 (2021)	 https://doi.org/10.1051/e3sconf/202128101011
CATPID-2021 Part 1



The concrete corrosive wear rate in the compressed zone in the cross section of the 
maximum moments (3) is: 0.33bV   % in year. The area of the preserved concrete is 

determined taking into account changes in thickness up to 2 cm on each side: 1680ref
bA   

cm2. 
The strength characteristics of the concrete in the compressed zone of the beam are 

determined in 4 sections and are 11bnR   MPa. 

Figure 4 shows a graph of the change in the ultimate bending moment M  (kN∙m) beams 

B-4 in time depending on the concrete corrosive wear degree in the compressed zone bV  , % 

and stretched reinforcement sV  , %. At the examination time (point 1 on the graph), the 
damage to the reinforcement is ~ 30%, concrete ~ 6-10%. 

 
Fig. 4. Bearing capacity of the beam B-4 normal section depending on the concrete corrosive wear 
degree in the compressed zone and tensile reinforcement: 1 - the position of the individual structure at 
the examination time; 2 - point corresponding to the onset of the I group of limit states, 3 - border of the 
unacceptable moments area. 

Calculation diagram of the beam B-4 in accordance with the existing practice can be taken 
in the form (Fig. 5): 

 

 

Fig. 5. Design scheme of the beam B-4, where 49.4q   kN/m, max 123.0M   kN∙m. 
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Fig. 5. Design scheme of the beam B-4, where 49.4q   kN/m, max 123.0M   kN∙m. 

Next, we solve the system of equations (7) and find 3 24   of the year. The average 

residual life of the structure under study will be 24 20 4T     of the year. In this case, 
the residual resource availability is (t) 0.9.P    

5 Conclusions 
1. The results of the chemical industry objects’ load-bearing structures mass survey show that 
the dominant factor determining their durability is the corrosive wear of the stretched 
reinforcement and the concrete compressed zone. At the same time, as a rule, there are no 
external signs of the onset of the limiting states of group II. However, at the same time, there 
is a significant corrosive wear of the longitudinal and transverse reinforcement cross-sectional 
area, damage to the protective concrete layer, a decrease in the cross-sectional area of the 
concrete compressed zone. 

2. Under operating conditions, the structure stress-strain state level is a factor that controls 
the rate and nature of concrete and reinforcement corrosive wear degradation processes. In this 
case, uneven corrosive wear leads to a sharp increase in the inhomogeneity of the sections’ 
stress-strain state. This circumstance predetermines the possibility for the limiting state onset 
of the I group in the local zone in the II group limiting states failures’ onset external signs 
absence. 

Thus, for these structures, an indispensable condition is an assessment of the residual life 
according to safety conditions. 
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