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Abstract. The article discusses the solution to the axisymmetric problem 
of determining the stresses and displacements arising from the joint action 
on the asymmetric load (soil resistance) array and a centrally symmetric 
temperature field. The case of continuous one-dimensional inhomogeneity 
is considered, when the deformation characteristics of a rock mass with a 
spherical cavity obtained by explosion are the continuous functions of one 
of the coordinates - the radius. The solution of the original system of 
equations for the displacement components is sought in the form of 
expansions in Fourier series in Legendre polynomials. Using the method of 
variablesseparation, it is possible to reduce the problem to a system of two 
ordinary differential equations with variable coefficients, which is solved 
numerically. The stress state calculation of homogeneous and 
inhomogeneous massifs surrounding a spherical cavity has been carried 
out. A comparative analysis of the results obtained has been performed. 

1 Introduction 

A rock mass containing a spherical cavity obtained by an explosion is considered. When 
creating underground cavities with the help of a nuclear explosion, a large amount of heat is 
almost instantly released in the cavity, while significant heating of the massif zone closest 
to the cavity occurs, followed by heat propagation into the depth of the massif and cavity 
surfacecooling. 

 
Fig. 1. Design scheme of the rock mass 
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This process is unsteady, but, excluding the initial period from consideration and taking 
into account the relatively slow redistribution of the thermal field during the subsequent 
sufficiently long time, the problem of determining the temperature stresses can be 
considered as quasi-stationary. 

2 Materials and methods 

The calculation scheme of the problem is shown in Fig. 1. The calculation was carried out 
taking into account the real operating conditions of the massif (the presence of resistance of 
the medium) and the dependence of the mechanical characteristics of the soil, both on 
temperature and on the fracturing of the massif. 

As it is known [1], with the explosive method of the underground cavities’formation, as 
well as with the drilling-and-blasting method of driving wells and tunnels, the surrounding 
rock mass undergoes such changes (the appearance of microcracks, compaction, sintering), 
which lead to mechanical heterogeneity of the material. In this case, a local change in the 
elastic modulus, which has a central symmetry, is observed. When solving the problem of 
thermo-elasticity at high temperature gradients, it is necessary to take into account the 
dependence of the elastic modulus on temperature. 

So, the complete dependenceE(r)is presented in the form [2,3]: 
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Where k1 and m are the empirical coefficients, r is cavity radius. 
Here E0 is the value of the modulus of elasticity at T =ºC, 
 denotes the empirical parameter. 

To assess the stress state of the massif under the influence of temperature fields and 
external loads, it is possible to use the equations of equilibrium in displacements [4]: 
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λ(r),μ(r) are Lamé constants; k(r)denotes the bulk modulus; в(r) = T(r) means forced 
thermal deformations; = const is a linear thermal expansion coefficient; 
 defines Poisson's ratio. 
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Where pb and qb  - surface loads, given functions from   [5]: 
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The solution of the system (Eq. 2) with boundary conditions (Eq. 3) is proposed to be 

sought in the form of displacementsexpansions in Fourier series: 
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Where  cosnP  is the Legendre polynomial ln-th degree. 
Substitution of the expressions (Eq. 4) into the system (Eq. 2) gives these equations for

0u to the equation:  
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and for un and vn ( n 1) to the system of two second-order ordinary differential 

equations with variable coefficients (the prime denotes differentiation along the radius): 
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The coefficients of these expansions cn and dn are determined by the well-known 
formulas 4. 

Thus, in (Eq. 6) the systems for n = 1 3. 
Further solution of the system (Eq. 6) with arbitrary dependences (r),(r)and k(r) 

should be done numerically. Various ways of numerical implementation of the considered 
equations are possible. In this paper, we use the matrix orthogonal sweep method6. 

Having definedu andv , the stresses r, ,  and r can be calculated by the 
formulas: 
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Where g0=T(r) at n=0, gn=0 at n0. 

3 Calculation results 

With the help of the developed program, the calculations were carried out with the 
following initial data: a=25 m; в=250 m;  

H=1200 m; =2.15 103kg/m3; E0=2 104MPa; =0.23. 
Temperature propagation in an isotropic medium under the action of instant heat 

sources distributed over a sphere of radius a according to1is described by the formula: 
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 Where 1T is an initial array temperature;T is the temperature at a point spaced from the 

center of the cavity at a distance r a , at the moment t; 0Q is the amount of heat 
generated; 
c is the specific heat of the medium;  denotes density; 1 a /сisthermal diffusivity; 

 is the material thermal conductivity coefficient; a defines cavity radius. 
The calculations used the averaged thermophysical characteristics of the soil are:  
c = 0.96 kJ/(kgdegree); a1 = 1.67 10-6 m2/s. 
Fig. 2 shows the temperature curves for some points in time t [7]: 

 
Fig. 2. Temperature curves for the points in time: 1 – 3.6 106s.;2 – 7.2 106s.; 3 – 4.025 107s.; 4 – 1.61 
108s. 

It is of considerable interest to study the temperature inhomogeneity effect on the rock 
mass stress state temperature components values [8,9,10]. 

Fig. 3 shows the diagrams of temperature stresses for a moment in time t = 1.61 108s. 
In this case, the parameter characterizing the fracturing of the rock 11 k . The graphs 
show a significant change in stresses near the contour in an inhomogeneous material in 
comparison with a homogeneous material, which is associated with a significant drop in the 
elastic modulus due to temperature inhomogeneity. 

 
Fig. 3. Diagrams of temperature stresses fort = 1.61 108s. ( = 900,k1=1,) 

Fig. 4 shows diagrams of total stresses   (at
090  ), caused by the simultaneous 

action of temperature and force loads on the rock mass under consideration, taking into 
account both types of material inhomogeneity. 
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Fig. 4. Diagrams of total stresses ( = 900, t = 1.61 108s.) 

It can be seen from the graphs that taking into account two types of inhomogeneity 
leads to an even more significant reduction in stresses, especially in the immediate vicinity 
of the cavity contour. Here, this voltage difference is approximately 50%. Further, when 
moving away from the contour of the cavity at a distance equal to 2a the results of 
calculations in the inhomogeneous and homogeneous cases practically coincide. A similar 
trend is observed when solving similar problems by numerical methods [11,12]. 

Change in voltages  along the contour of the cavity is shown in Fig. 5. It can be seen 
from these graphs that the stresses differ significantly in the entire range of values  for 
homogeneous and heterogeneous arrays. The exceptions are the zones close to the cavity 
poles ( 00  and 0180  ). The largest difference in voltage values is observed at 

090  . But when approaching the poles, this difference becomes less and less noticeable. 

 
Fig. 5. Diagrams of stresses along the contour of the cavity for t = 1.61 108s 

4 Conclusion 

Analyzing the obtained results of the calculations, we can conclude that taking into account 
the heterogeneity of the material is necessary when calculating rock masses under power 
loads and under temperature effects that inevitably arise when the cavities are created in 
them by means of explosion. 
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