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Abstract: The rapid urbanization process has recently led to significant land use and land cover (LULC) 
changes, thereby affecting the climate and the environment. The purpose of this study is to analyze the LULC 
changes in Hefei City, Anhui Province, and their relationship with land surface temperature (LST). To achieve 
this goal, multitemporal Landsat data were used to monitor the LULC and LST between 2005 and 2015. The 
study also used correlation analysis to analyze the relationship between LST, LULC, and other spectral indices 
(NDVI, NDBI, and NDWI). The results show that the built-up land has expanded significantly, transforming 
from 488.26 km2 in 2005 to 575.64 km2 in 2015. It further shows that the mean LST in Hefei city has increased 
from 284.0 K in 2005 to 285.86 K in 2015. The results also indicate that there is a positive correlation between 
LST and NDVI and NDBI, while there is a negative correlation between LST and NDWI. This means that 
urban expansion and reduced water bodies will lead to an increase in LST. 

1 Introduction 
With the development of the economy, the urban 
population has grown rapidly, which has promoted rapid 
urbanization. Land use and land cover (LULC) patterns 
have undergone tremendous changes, as well as changes 
in various biophysical climatic conditions, especially 
urban land surface temperature (LST) [1,2]. The 
conversion of LULC (such as wetlands, vegetation, and 
agricultural areas) to impervious land can greatly affect 
LST [3]. LST is regularly measured from satellite sensors 
with medium spatial scale and high temporal resolution 
(such as Landsat). Generally, the LST data derived from 
the satellite's thermal infrared (TIR) band is a key variable 
to understand the impact of changes in LULC caused by 
urbanization [4]. Spectral indices from remote sensing 
data can usually provide a comprehensive understanding 
of the relationship between LST and LULC conditions 
[5,6]. The most common satellite-derived indicators for 
estimating the temporal and spatial changes of LST are the 
normalized difference vegetation index (NDVI), the 
normalized difference built-up index (NDBI), and the 
normalized difference water index (NDWI) [7]. Previous 
studies have analyzed the different relationships between 
LULC, LST, NDVI, NDBI, and NDWI [7-13]. These 
results are mainly attributable to the growth and expansion 
of cities brought about by urbanization and socio-
economic development, which affect land use and 
regional climate change. 

This study aims to monitor and analyze the 
spatiotemporal trends of LULC changes and establish 
their relationship with the LST changes of Hefei city, 
China. More specifically, the study seeks to: (a) map and 

analyze the various changes in the LULC pattern of Hefei 
city from 2005 to 2015; (b) study the distribution of LST, 
NDVI, NDBI, and NDWI of the Hefei city; (c) analyze the 
relationship of LST and indices (NDVI, NDBI, and 
NDWI). 

2 Materials and Methods 

2.1. Study Area 

Hefei city is the largest and capital city of Anhui Province, 
China, which comprises four urban districts, one county-
level city, and four counties. In this study, four urban 
districts were chosen as the study area, which covers an 
area of 1308 km2 and is situated between 116°51’-
117°26’E and 31°38’-32°4’N. (Figure 1). 
 

 
Figure 1. Location map of the study area. 
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2.2. Datasets 

To identify the changes in LULC, the Landsat 5/7/8 
images of Level-1 products for Worldwide Reference 
System-2 with Path 121 Row 38 on 5 March 2005, 11 
March 2010, and 1 March 2015, were downloaded 
through the United States Geological Survey online portal 
(www.earthexplore.usgs.gov). Auxiliary data in the form 
of reference maps were obtained from Google Earth 
imagery. The MOD05_L2 product of MODIS/Terra on the 

same day with the Landsat data was downloaded from 
LAADS DAAC 
(https://ladsweb.modaps.eosdis.nasa.gov/). 

2.3. Research Methodology 

The methodological flow chart illustrated in Figure 2 
summarizes the several procedures used in this study. 

 
Figure 2. Methodological flow chart of the study. 

2.3.1. LULC Classification 

The maximum likelihood classification (MLC) method is 
one of the most widely used LULC classification methods 
due to its high classification accuracy [14,15]. In this study, 
the MLC method was used to divide the LULC in 2005, 
2010, and 2015 into four categories, including built-up 
land, agricultural land, forest land, and water bodies. 

2.3.2. Accuracy Assessment 

The standard thematic accuracy assessment was adopted 
using overall accuracy (OA), and Kappa hat (KH) 
coefficient based on error matrix between classified 
LULC data and ground reference information data [16]. 
For thematic accuracy assessment, the number of samples 
was estimated based on the multinomial distribution 
[16,17], and sample points were allocated for thematic 
accuracy assessment using a stratified random sampling 
technique. 

2.3.3. NDVI, NDBI, and NDWI Estimation 

The NDVI, NDBI, and NDWI are the most used indicators 
in environmental studies, which were applied to extracting 
vegetation conditions, impervious surfaces, and water 
bodies from remotely sensed data, respectively. These 
indices were estimated using Equation (1) to Equation (3) 
[7]. 

���� � ���� � ���� ���� � ����⁄  (1)
���� � ������ � ���� ������ � ����⁄  (2)
���� � ������ � ���� ������ � ����⁄  (3)

2.3.4. LST Retrieval 

The TIR bands from Landsat 5/7/8 were used to retrieve 
LST through a single channel (SC) algorithm. The process 
to retrieve LST is discussed below. 

(1) Brightness temperature calculation 
DNs of the TIR band of Landsat images were 

converted to spectral radiance using the radiance scaling 
factors provided in the metadata file. Then the brightness 
temperature (BT), which is the effective temperature 
viewed by the satellite under an assumption of unity 
emissivity, can be converted from spectral radiance with 
the following formula [1]: 

𝐿𝐿� � 𝑀𝑀� ∙ 𝑄𝑄��� � 𝐴𝐴� (4)

𝑇𝑇 � 𝐾𝐾� ∙ �����𝐾𝐾�𝐿𝐿� � ���
��

 (5)

where, 𝐿𝐿� is the spectral radiance (W/ (m2·sr·μm)), 𝑀𝑀� is 
the radiance multiplicative scaling factor, 𝐴𝐴�  is the 
radiance additive scaling factor, 𝑄𝑄��� is the pixel value in 
DN, 𝑇𝑇  is BT in Kelvin (K), K1, and K2 are the thermal 
conversion constants. 

(2) Emissivity extraction 
In this study, the NDVI threshold method [18] were 

adopted to estimate the emissivity of different land 
surfaces as follows: 

Multitemporal LULC 
dataset 

Input Process Output 

Landsat and MODIS datasets 

LST conversion using Single Channel algorithm 

Multitemporal spectral reflectance dataset 

Spectral reflectance conversion using USGS method 

Multitemporal LST dataset 

Maximum likelihood 
classification method 

Linkage 

Multitemporal NDVI, NDBI 
and NDWI dataset 

Index calculation 

The relationship of LST and indices  

Spatial analysis  

Multitemporal spectral radiance dataset 

Spectral radiance conversion using USGS method 
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where, ε is the band emissivity, εv and εs are the 
emissivities of vegetation and soil, respectively, Pv is the 
proportion of vegetation, NDVIv and NDVIs are the NDVI 
for a fully vegetated pixel and a soil one, respectively, and 
F' is a geometrical factor ranging between 0 and 1. 

(3) Water vapor content extraction 
MODIS Reprojection Tool and MRTSwath tool were 

used for reprojection and conversion of MODIS product 
to DN values of water vapor content. To retrieve the real 
value of water vapor content, the DN values were divided 
by the scaling factor (scaling factor = 1000). 

(4) Land surface temperature derivation 
The SC algorithm provided by Jiménez-Muñoz and 

Sobrino [19] was chosen for LST retrieval from Landsat 
data using the following Equation (7): 

𝑇𝑇� � 𝑇𝑇����

𝑏𝑏�𝐿𝐿���
�1
𝜀𝜀 �𝜑𝜑�𝐿𝐿��� � 𝜑𝜑�� � 𝜑𝜑�� � �𝑇𝑇��� � 𝑇𝑇����

𝑏𝑏�
� (7)

where, Ts is the land surface temperature, ε is the surface 
emissivity, Tsen is the at-sensor BT; bγ = c2/λ; and φ1, φ2, 
and φ3 are the atmospheric functions which can be 
obtained as a function of the total atmospheric water vapor 
content (w) [20-22]. 

3 Results & Discussion 

3.1. LULC Classification and Change Detection 

The classified LULC maps of Hefei city are presented in 
Figure 3 and quantified in Table 1. These classes comprise 
built-up land (B), agricultural land (A), forest land (F), and 
water bodies(W). 

 
(a) (b) (c) 

Figure 3. Classified LULC of Hefei city in; (a) 2005, (b) 2010, and (c) 2015. 

Table 1. LULC distribution in 2005, 2010, and 2015. 

LULC Types 
2005 2010 2015 

Area (sq. km) Area (%) Area (sq. km) Area (%) Area (sq. km) Area (%) 
Built-up land 488.26  37.31  504.16  38.53  575.64  43.99  

Agricultural land 692.84  52.95  651.77  49.81  625.01  47.76  
Forest land 21.88  1.67  35.82  2.74  8.14  0.62  

Water bodies 105.57  8.07  116.80  8.93  105.33  8.05  
Total 1308.56  100.00  1308.56  100.00  1308.56  100.00  

The result reveals that the built-up land has expanded 
from 488.26 km2 (37.31%) in 2005 to 575.64 km2 (43.99%) 
in 2015 as the most one among the four LULC types in 
Hefei city. However, the agricultural land and forest land 
decreased from 692.84 km2 (52.95%) and 21.88 km2 
(1.67%) in 2005 to 625.01 km2 (47.76%) and 8.14 km2 
(0.62%) in 2015, respectively. Meanwhile, the water 
bodies remained basically unchanged. The gradual 
increase in built-up land and decrease in agricultural land 
can be attributed to urban growth. It can be seen from the 
LULC classification and change detection that the 
urbanization process of Hefei may be an important factor 
in the transition from the natural surface to the built-up 
land. 

3.2. Accuracy Assessment of LULC 
Classification 

In this study, 443 sample points based on the multinomial 
distribution with the desired precision of 5% and a level 
of confidence of 85% were applied to access thematic 
accuracy assessment. Table 2 shows the error matrix and 
accuracy of LULC classification in 2005, 2010, and 2015. 
The OA and KH of the three maps were above 87%, and 
0.8, which signifies a reliable LULC classification [23]. 
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Table 2. Error matrix of 2005, 2010, and 2015. 

(a) 2005 Error Matrix (b) 2010 Error Matrix (c) 2015 Error Matrix 
LULC Types B A F W LULC Types B A F W LULC Types B A F W 

B 59 14 3 2 B 89 13 2 1 B 129 11 5 1 
A 4 277 5 4 A 13 239 5 2 A 10 194 4 2 
F 3 5 15 2 F 2 4 18 1 F 4 5 15 1 
W 1 1 0 48 W 1 2 2 49 W 1 3 0 48 
OA 90.1% OA 89.2% OA 87.1% 
KH 0.808 KA 0.815 KA 0.802 

3.3. LST Distribution 

The spatial distribution of LST of Hefei city in 2005, 2010, 
and 2015 were illustrated in Figure 4. The results indicate 
that the LST of Hefei city ranged between approximately 
277.45-287.16 K, 272.77-290.66 K, and 279.63-288.86 K 
in 2005, 2010, and 2015, respectively. Meantime, the 
mean LST were approximately 284.01, 286.69, and 

285.86 in 2005, 2010, and 2015, respectively. The LST 
analysis indicates that the mean LST of the Hefei city has 
increased by 2.68 K from 2005 to 2015. Furthermore, the 
mean LST decreased by 0.83 K from 2010 to 2015 since 
the data acquisition date in 2015 was 10 days earlier than 
in 2010. In general, the mean LST in Hefei city increased 
by1.85 K from 2005 to 2015. 

The development of urban land has led to an increase 
in land surface temperature in Hefei, which is consistent 
with previous studies [24]. 

(a) (b) (c) 

Figure 4. LST distribution of Hefei city in; (a) 2005, (b) 2010, and (c) 2015. 

3.4. NDVI, NDBI, and NDWI Distribution and 
Their Relationship with LST 

The distribution of NDVI of Hefei city in 2005, 2010, and 
2015, is presented in Figure 5. The result indicates that the 
NDVI values ranged between -0.3930 to 0.5963 in 2005, 
-0.4286 to 0.4790 in 2010, and -0.3610 to 0.6386 in 2015. 
The results demonstrate the highest NDVI in the west and 
north-eastern part of Hefei city, mainly covered by forest 
land and agricultural land. The distribution of NDBI of 

Hefei city in 2005, 2010, and 2015 is presented in Figure 
6. The result indicates that the NDBI values ranged 
between -0.8517 to 0.5966 in 2005, -0.6429 to 0.5283 in 
2010, and -0.6811 to 0.4768 in 2015. The built-up land in 
the center of Hefei city has a higher NDBI while the water 
bodies have a lower NDBI. The distribution of NDWI of 
Hefei city in 2005, 2010, and 2015 is presented in Figure 
7. The result demonstrates that the NDWI values ranged 
between -0.5022 to 0.4908 in 2005, -0.3846 to 0.4828 in 
2010, and -0.5461 to 0.4534 in 2015. Among them, the 
water bodies have the highest NDWI value. 

   
(a) (b) (c) 

Figure 5. NDVI spatial distribution of Hefei city in: (a) 2005, (b) 2010, and (c) 2015. 
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(a) (b) (c) 

Figure 6. NDBI spatial distribution of Hefei city in: (a) 2005, (b) 2010, and (c) 2015. 

   
(a) (b) (c) 

Figure 7. NDWI spatial distribution of Hefei city in: (a) 2005, (b) 2010, and (c) 2015. 

To examine the relationship between NDVI, NDBI, 
NDWI, and LST, the correlation was calculated with the 
Band Collection Statistics tool in ArcGIS and the results 
are displayed in Table 3. It shows a positive correlation 
between the values of LST and NDVI and NDBI, and a 
negative correlation between LST and NDWI. The results 
indicate that lower LST values corresponded to lower 
NDVI (e.g., water bodies), while higher LST values 

corresponded to higher NDVI (e.g., agricultural land). 
Furthermore, the results also manifest that lower LST 
values corresponded to lower NDBI (e.g., water bodies), 
while higher LST values corresponded to higher NDBI 
(e.g., built-up land). In contrast, the results imply that 
lower LST values corresponded to higher NDWI (e.g., 
water bodies), while higher LST values corresponded to 
lower NDWI (e.g., built-up land). 

Table 3. Correlation between NDVI, NDBI, NDWI and LST 

Year NDVI and LST NDBI and LST NDWI and LST 
2005 0.4861 0.7726 -0.5903 
2010 0.6949 0.6553 -0.7811 
2015 0.7123 0.7369 -0.7735 

The positive correlation between LST and NDVI, the 
positive correlation between LST and NDBI, and the 
negative correlation between LST and NDWI conform to 
earlier studies. Yuan Chi et al.[8] analyzed relationships 
among LST and NDVI in the Yellow River Delta, China, 
the positive correlations were observed in all seasons of 
2016–2017. Subhanil Guha et al. [11] focuses on the study 
of land surface temperature with NDBI using Landsat 8 
OLI and TIRS data in Florence and Naples city, and LST 
performs a strong correlation with NDBI (positive). Bayes 
Ahmed et al.[25] analyzed LULC and LST in Dhaka, 
Bangladesh, and the results of multiple correlation and 
regression analyses indicate that LST presents a negative 
correlation with NDWI. 

4 Conclusions 
The multi-temporal Landsat satellite data was used to 
analyze the spatiotemporal impact of LULC changes on 
LST in Hefei city from 2005 to 2015 in this study. The 

LULC change analysis indicates a rapid urban growth in 
Hefei city with a considerable built-up land increase from 
488.26 km2 in 2005 to 575.64 km2 in 2015. The LST 
analysis result revealed that the mean LST increased from 
284.0 K in 2005 to 285.86 K in 2015. The correlation 
between LST and land-use indices was also analyzed in 
this study. The study suggests a positive relationship 
between LST and NDBI while establishing a negative 
relationship between LST and NDWI during the different 
periods. This implies that higher LST is experienced along 
with a decline in water bodies and an increase in built-up 
land. The findings of this study suggest that LULC 
changes in Hefei city have substantially influenced LST. 
Consequently, the mitigation plan to reduce land surface 
temperature due to urbanization should be prepared by the 
corresponding agencies. 
 
 
 

5

E3S Web of Conferences 283, 01038 (2021)	 https://doi.org/10.1051/e3sconf/202128301038
ICCAUE 2021



 

Acknowledgments  

This research was funded by the Natural Science Research 
Project of Anhui Education Department, grant number 
KJ2019A0707. 

Reference 

1. Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; 
Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. 
Relation between Urban Volume and Land Surface 
Temperature: A Comparative Study of Planned and 
Traditional Cities in Japan. Sustainability 2018, 10, 
2366. 

2. Fu, P.; Weng, Q. A time series analysis of 
urbanization induced land use and land cover change 
and its impact on land surface temperature with 
Landsat imagery. Remote Sensing of Environment 
2016, 175, 205-214. 

3. Kafy, A.A.; Rahman, M.S.; Faisal, A.-A.; Hasan, 
M.M.; Islam, M. Modelling future land use land cover 
changes and their impacts on land surface 
temperatures in Rajshahi, Bangladesh. Remote 
Sensing Applications: Society and Environment 2020, 
18, 100314. 

4. Zhu, Z.; Woodcock, C.E. Continuous change 
detection and classification of land cover using all 
available Landsat data. Remote Sensing of 
Environment 2014, 144, 152-171. 

5. Fu, P.; Weng, Q. Responses of urban heat island in 
Atlanta to different land-use scenarios. Theoretical 
and Applied Climatology 2018, 133, 123-135, 
doi:10.1007/s00704-017-2160-3. 

6. Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of 
landscape composition and pattern on land surface 
temperature: An urban heat island study in the 
megacities of Southeast Asia. Science of The Total 
Environment 2017, 577, 349-359. 

7. Chen, X.-L.; Zhao, H.-M.; Li, P.-X.; Yin, Z.-Y. 
Remote sensing image-based analysis of the 
relationship between urban heat island and land 
use/cover changes. Remote Sensing of Environment 
2006, 104, 133-146. 

8. Chi, Y.; Sun, J.; Sun, Y.; Liu, S.; Fu, Z. Multi-
temporal characterization of land surface temperature 
and its relationships with normalized difference 
vegetation index and soil moisture content in the 
Yellow River Delta, China. Global Ecology and 
Conservation 2020, 23, e01092. 

9. Zhang, Y.; Odeh, I.O.A.; Han, C. Bi-temporal 
characterization of land surface temperature in 
relation to impervious surface area, NDVI and NDBI, 
using a sub-pixel image analysis. International 
Journal of Applied Earth Observation and 
Geoinformation 2009, 11, 256-264. 

10. Yuvaraj, R.M. Extents of Predictors for Land Surface 
Temperature Using Multiple Regression Model. The 
Scientific World Journal 2020, 2020, 3958589. 

11. Guha, S.; Govil, H.; Dey, A.; Gill, N. Analytical study 
of land surface temperature with NDVI and NDBI 
using Landsat 8 OLI and TIRS data in Florence and 

Naples city, Italy. European Journal of Remote 
Sensing 2018, 51, 667-678. 

12. Mirchooli, F.; Sadeghi, S.H.; Khaledi Darvishan, A. 
Analyzing spatial variations of relationships between 
Land Surface Temperature and some remotely sensed 
indices in different land uses. Remote Sensing 
Applications: Society and Environment 2020, 19, 
100359. 

13. Taloor, A.K.; Drinder Singh, M.; Chandra Kothyari, 
G. Retrieval of land surface temperature, normalized 
difference moisture index, normalized difference 
water index of the Ravi basin using Landsat data. 
Applied Computing and Geosciences 2021, 9, 100051. 

14. Shang, M.; Wang, S.-X.; Zhou, Y.; Du, C. Effects of 
Training Samples and Classifiers on Classification of 
Landsat-8 Imagery. Journal of the Indian Society of 
Remote Sensing 2018, 46, 1333-1340. 

15. Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. 
Comparison of Classification Algorithms and 
Training Sample Sizes in Urban Land Classification 
with Landsat Thematic Mapper Imagery. Remote 
Sensing 2014, 6, 964-983. 

16. Congalton, R.G.; Green, K. Assessing the Accuracy 
of Remotely Sensed Data - Principles and Practices 
Second edition; CRC Press, Taylor & Francis Group: 
Boca Raton, NW, USA, 2009; p. 210. 

17. Tortora, R.D. A Note on Sample Size Estimation for 
Multinomial Populations. American Statistician 1978, 
32, 100-102. 

18. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Soria, G.; 
Romaguera, M.; Moreno, L.G.A.-J.; Plaza, A.; 
Martinez, P. Land Surface Emissivity Retrieval From 
Different VNIR and TIR Sensors IEEE Transactions 
on Geoscience and Remote Sensing 2008, 46, 316-
327. 

19. Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized 
single-channel method for retrieving land surface 
temperature from remote sensing data. Journal of 
Geophysical Research 2003, 108, ACL 2-1. 

20. Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land 
surface temperature retrieval from LANDSAT TM 5. 
Remote Sensing of Environment 2004, 90, 434-440. 

21. Jiménez-Muñoz, J.C.; Cristobal, J.; Sobrino, J.A.; 
Soria, G.; Ninyerola, M.; Pons, X. Revision of the 
Single-Channel Algorithm for Land Surface 
Temperature Retrieval From Landsat Thermal-
Infrared Data. IEEE Transactions on Geoscience and 
Remote Sensing 2009, 47, 339-349. 

22. Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skoković, D.; 
Mattar, C.; Cristóbal, J. Land Surface Temperature 
Retrieval Methods From Landsat-8 Thermal Infrared 
Sensor Data. IEEE Geoscience and Remote Sensing 
Letters 2014, 11, 1840-1843. 

23. Story, M.; Congalton, R.G. Accuracy Assessment: A 
User’s Perspective. Photogrammetric Engineering 
and Remote Sensing 1986, 52, 397-399. 

24. Rousta, I.; Sarif, M.O.; Gupta, R.D.; Olafsson, H.; 
Ranagalage, M.; Murayama, Y.; Zhang, H.; Mushore, 
T.D. Spatiotemporal Analysis of Land Use/Land 
Cover and Its Effects on Surface Urban Heat Island 
Using Landsat Data: A Case Study of Metropolitan 

6

E3S Web of Conferences 283, 01038 (2021)	 https://doi.org/10.1051/e3sconf/202128301038
ICCAUE 2021



 

City Tehran (1988–2018). Sustainability 2018, 10, 
4433. 

25. Ahmed, B.; Kamruzzaman, M.; Zhu, X.; Rahman, 
M.S.; Choi, K. Simulating Land Cover Changes and 
Their Impacts on Land Surface Temperature in Dhaka, 
Bangladesh. Remote Sensing 2013, 5, 5969-5998. 

 

7

E3S Web of Conferences 283, 01038 (2021)	 https://doi.org/10.1051/e3sconf/202128301038
ICCAUE 2021


