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Abstract. After the wheat is coarsely grinded in the breakage technological 
phase and after a certain percentage of flour and bran has been extracted 
here, the crushing is continued in the reduction technological phase. The 
paper presents the flow of grist products at the first two technological 
passages from the reduction phase of an industrial milling unit. Samples 
taken from these two technological passages were subjected to a 
granulometric analysis, and with the experimental data a nonlinear 
correlation was performed with the Rosin-Rammler law, obtaining 
correlation coefficients of over 0.954. The paper also discusses the limits 
of the dimensions between which the particles of each fraction are sorted at 
the first two technological passages in the reduction phase. The analysis 
performed in this paper can serve in establishing the fabrics of the sifting 
frames from the plansifter compartments, respectively when adjusting the 
roller mills. 

1 Introduction 
 Among the grains, wheat (Triticum aestivum) is the second largest production level in 
the world, most of which being subjected to a process of grinding and turning into flour [1, 
2], in the first place being corn, while in third place is rice (for grinding). Wheat is the only 
cereal with enough gluten content, from whose flour ordinary bread can be obtained 
without being mixed with other types of flour [3]. 
 The modern roller milling process of wheat can be divided into three main systems: 
break system, where grist fractions are passed through a series of fluted break rolls and the 
various resulted milling fractions are separated by being passed through a plansifter 
compartments; the grading system, where the particles are separated from sizes and 
endosperm particles are separates from adhering bran; reduction system which reduce pure 
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endosperm to fine particles of flour by passing through a series of smooth grinding rolls [4 - 
6]. 
 The grinding process takes place continuously, by gradually passing the material from 
machine to machine, in order to obtain flour, semolina and bran. The main machines used 
in a milling unit are: roller mills (break system and reduction system), plansifter, semolina 
machine and bran finisher (grading system). Thus, the two principal operations in milling 
process are grinding and sifting, [6,]. Several technological passages are provided for two 
phases of grist breakage and reduction, passages that consists in a grinding the same 
product on one or more rolls pairs followed immediately by sifting in one or more plansifter 
compartments. The technological diagrams for grinding wheat have in composition, mainly, 
several breakage technological passages and several reduction technological passages. In 
the breakage phase are used grinding rolls with flutes, while in the reduction phase the 
grinding rolls have a smooth surface.  
 The optimization of the milling processes (reduce energy costs, yield flour, improve 
quality) requires understanding the behaviour of materials, the material circuit on the 
technological flow, and machine operations [6]. The factors affecting the milling process 
and the end-product quality are machines type, the machine operational parameters, and the 
material properties, as described in papers [7 - 11]. Flour from different grinding passage 
differ significantly in terms of chemical composition and physical properties [12]. In papers 
[12, 13] it is shown that at the first two reduction passages was obtained the highest yield in 
flour with a minimum ash content, but also of the highest quality, the best quality bread was 
obtained from them. As has been shown in numerous papers [11, 14, 15], the material 
obtained at the first passage of the reduction phase is composed of endosperm and 
endosperm with particles of bran adhering. The bran particles are flattened and remain in 
the coarsest size fractions (>200 µm), which favours the process of separating the 
endosperm particles from the flour particles. 
 Modern wheat grinding is an efficient technological process that economically splits 
wheat seeds to recover high quality flour. The endosperm is the main part of the seed, being 
composed of about 64-75% starch, 11-16% protein, 1.5% fat, 0.5% minerals, 1.5% dietary 
fibre, and other components, [16]. 
 In the process of dry grinding, especially in the last breakage and reduction passages, 
an increase in the content of Alternaria-type toxins was detected, which is mainly 
concentrated in the peripheral layers [1]. For this reason, first quality flour, which is 
extracted from the central parts of the core, can be considered safer than inferior quality 
flour or than milling by-products. 
 Also, Hajnal et al. [1] shows that fine wheat particles from breakage passages IV, V 
and VI or those from the last reduction passages lead to dark flour, with lower quality, with 
a high mineral content (ash). It seems that the by-products have a weight of about 17-24% 
(bran and short fractions), the dominant share being the big bran (walloping, 14-15%). 
 In the grinding process, starch granules can be damaged, especially in durum wheat 
where the starch-protein bonds are stronger, compared to common wheat which bonds are 
weaker. The aleuronic layer, surrounding the endosperm, having cells overgrown with it, 
but with strong ties with seed coat, it is difficult to extract in the grinding process, that is 
why he is largely removed with the brans. If aleuronic layer is included in the flour, the 
nutritional quality of the flour may increase, but the process requires special care so that the 
bran does not reach in the flour with the aleuronic particles [1, 4, 17]. 
 The paper analyses the dimensional characteristics of the grist intermediate products 
from the first two technological passages in the reduction phase of a milling unit of 4.2 t/h. 
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2 Material and method 

Grist samples were taken from S.C. Spicul S.A., Roșiorii de Vede, Romania, for the first 
two technological passages from the reduction technological phase. Thus, samples were 
taken from the grist mixture that feeds the two smooth grinding rolls (M1A and M1B), 
from the mixture that feeds the two plansifter compartments of the first two passages (C1 
and C2), but also samples from the fractions sorted inside the two plansifter compartments. 
The technological flow of the semolina reduction phase is presented in figure 1. The 
equivalence between the number of the sieve and the dimensions of its apertures, are 
presented in standards and in paper [18]. 

 
Fig. 1. Technological flow of semolina reduction phase, [19]. C1–C6 – plansifter compartments; 
Break 1–5 – breaking rolls; MG1, MG2 – semolina machines; M1A, M1B, M2–M6 – reduction rolls; 
F – F3 – flour. 
 

It can be seen from Figure 1 that all grinding rolls of the reduction technological phase 
have a length of 1000 mm and a diameter of 250 mm and a smooth surface, without flutes. 
The ratio of the angular velocities of the grinding rolls is, for five pairs of reduction rolls, 
k=2.54, and for two pairs of reduction rolls k=1.5. This is contrary to the recommendations 
in the literature, which says that at reduction k = 1.5 or k = 1. 

The products to be grinded in the reduction technological phase are products that arrive 
from the breakage technological phase (Break 1-6) or from semolina machines and bran 
finishers. Undersized particles from semolina machines, representing semolina that have 
dimensions below 1.0 mm, are grinded in the first two technological passages (roller mill 
M1A and plansifter compartment C1, and roller mill M1B and plansifter compartment C2). 
In diagram, the first fractions (an oversized fractions) sorted in the plansifter compartments 
of M1A and M1B technological passages are led to the grinding roll M3, which works 
together with a half of plansifter compartment (half from C4). It should be noted that in 
grinding rolls that crush smaller endosperm particles (about 0.40 mm), after the grinding 
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rolls are introduced into the technological flow material detachers, due to agglomerations 
that occur by compressing smaller endosperm particles in the area of action of the grinding 
rolls. 

Semolina fractions grinded at reduction roll M1A are sorted on dimensional fractions 
inside the C1 plansifter compartment. This compartment consists of five sifting frames 
packages of metal or plastic fabric. 

From Figure 1 it can be seen that the first five sifting frames (with fabric No. 50) are 
arranged in a package. The oversized particles collected from this package is sent to 
grinding roll M3, and the undersized particle feed the second package, consisting, in turn, 
of four sieve frames (No. 60). The oversized particles from this package is sent to grinding 
roll M1B, and the undersized particle feed the third package. It consists of seven sieve 
frames with 0.17 mm fabric apertures (flour sieve - no. IX). Fourth package of sifting 
frames (no. X) has two frames with plastic fabric with 0.15 mm apertures. The undersized 
particles collected from sifting frames of packages three and four from this compartment 
are discharged as a flour, and the oversized particles feed the last sifting package of 
compartment, which has five frames no. VIII (0.18 mm apertures width). The undersized 
particles from this package is a semolina flour that is discharged as such. The oversized 
particles are redirected for grinding to reduction roll M2. 

After grinding at reduction roll M1B, the semolina is sorted into dimensional fractions 
in the C2 plansifter compartment, consisting of 4 packs of frames. The first package has 
five frames with fabric no. 50, at the end of which the first fraction of oversized particles is 
directed to the grinding roll M3. The undersized particles from this package feeds the 
second package consisting of eight flour frames no. IX. In turn, the undersized particles of 
the second package is discharged in the form of flour (F2), having particles smaller than 
0.17 mm. The oversized particles from this package is directed to the third package 
consisting of seven frames of flour sieve no. X which evacuates the undersized particles as 
flour. The oversized particles of this package reaches the first of the three frames of the last 
package of the compartment (with fabric no. VIII). The oversized particles of the fourth 
package is directed for re-grinding to the grinding roll M2, and the undersized particles are 
extracted in the form of semolina flour. 

After sampling on the flow of the milling unit, in the laboratory 100 grams of material 
was subjected to a particle size analysis with a classifier with sieves Analysette 3 Spartan 
type, the fineness of the fraction being appreciated by the mean diameter of the grist 
particles: 

𝑑𝑑� =
∑𝑝𝑝� ∙ 𝑑𝑑�
∑ 𝑝𝑝�

,𝑚𝑚𝑚𝑚 (1) 

where: pi - the percentage of material on sieve i of the classifier; pi = 100 – the sum of the 
percentages of material on the sieves; di – the mean particle size of each fraction, 
considered as the arithmetic mean of the size of the apertures of the sieves enclosing the 
respective fraction di = (xi+xi+1)/2. 
 The grist samples (14 in number) were sorted by sifting on a set of 5 superimposed 
sieves driven in vibrating motion with an amplitude of 2 mm, the sifting time being 3 
minutes. The working methodology is presented in numerous papers in the literature, [20, 
21]. 
 The experimental data were subjected to a nonlinear regression analysis, in Microcal 
Origin. It were thus obtained, variation curves for sifted T (x) and for rejected material, R 
(x). Nonlinear regression analysis was performed using Rosin-Rammler particle size 
distribution law, [22, 23], and which is represented by relationships: 

𝑇𝑇(𝑥𝑥) = 100 ∙ �1 − 𝑒𝑒��∙��� (2) 

𝑅𝑅(𝑥𝑥) = 100 ∙ 𝑒𝑒��∙��  (3) 
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where T(x) – represents the mass percentage weight of the fraction with particles smaller 
than x (passed through the sieve with size x), and R(x) – mass percentage by weight of the 
fraction with particles larger than x (which do not pass through the sieve with dimension x); 
x – the size of the sieve apertures;  and  – nonlinear regression coefficients. 

3 Results and discussions 
In table 1 is shown the results of the particle size analysis for the grist that feeds grinding 
roll M1A, and is then sorted in the plansifter compartment C1 (see figure 1) and the 
dimensions of the sieve apertures used in the classifier. 
 
Table 1. Weight values pi (%) of the fractions on the classifier sieves and of the cumulative weights 
Ti (%) for products collected at the inlet and at the 5 outlets of the plansifter compartment of the first 

technological passage, but also for the fraction that feeds the grinding roll M1A. 
 x 

(mm) 
M1A Entr. x 

(mm) 
C1 Entrance x 

(mm) 
C1M3 x 

(mm) 
C1M1B 

p(%) T(%) p(%) T(%) p (%) T(%) p(%) T(%) 
0 0.000 0.90 0.00 0.000 34.40 0.00 0.000 0.10 0.00 0.000 0.40 0.00 
1 0.180 1.00 0.90 0.180 16.30 34.40 0.100 0.30 0.10 0.100 7.90 0.40 
2 0.250 3.70 1.90 0.250 10.30 50.70 0.125 19.40 0.40 0.125 8.70 8.30 
3 0.315 33.30 5.60 0.315 15.80 61.00 0.180 50.80 19.80 0.180 30.70 17.00 
4 0.500 49.10 38.90 0.500 12.50 76.80 0.250 25.50 70.60 0.250 45.30 47.70 
5 0.710 12.00 88.00 0.710 10.70 89.30 0.315 3.90 96.10 0.315 7.00 93.00 

dm dM1A.E = 0.55 d1E=0.33 mm d1M3=0.23 mm d1M1B=0.24 mm 
 

    x 
(mm) 

C1M2    x 
(mm) 

C1F    x 
(mm) 

C1Fgrif 
p(%) T(%) p(%) T(%) p(%) T(%) 

0 0.000 0.20 0.00 0.000 1.30 0.00 0.000 0.60 0.00 
1 0.063 4.20 0.20 0.09035.30 1.30 0.063 9.30 0.60 
2 0.09010.10 4.40 0.12517.5036.600.09025.70 9.90 
3 0.12533.5014.500.16022.9054.100.12538.6035.60
4 0.16040.7048.000.18015.6077.000.16020.1074.20
5 0.18011.3088.700.200 7.40 92.600.180 5.70 94.30

dm d1M2 = 0.16 mm d1F=0.15 mm d1Fgrif = 0.17 mm 
  

 Analysing figure 1 it can be seen that the M1A grinding roll is fed with part of the 
undersized particles of the two semolina machines (MG1 and MG2) from reduction phase. 
This mixture of particles that feeds the first grinding roll has most of the particles with 
dimensions greater than 0.25 mm (98.1 %) and generally represent the categories of 
semolina (great semolina – 12%, medium semolina – 49.1 % and small semolina – 33.3%) 
and harsh dunsts– 3.7 %. After grinding, the mixture obtained (fraction C1 Entrance) it will 
be fed into the plansifter compartment C1 for separation on particle size fractions. After 
grinding, the percentage of particles larger than 0.25 mm decreases from 98.1% to 49.3% 
and represents the same categories as above (great semolina – 10.7%, medium semolina – 
12.5 %, small semolina – 15.8% and harsh dunsts – 10.3 %). In this mixture there are also 
particles with dimensions below 0.18 mm (about 34.4%) mainly represented by the C1F 
and C1Fgrif grist fractions. The resulting fractions, which are sorted at compartment C1, 
have mean particle sizes corresponding to Table 1. It can also be seen that if the mean 
diameter of the particle mixture being fed into the M1A grinding roll is 0.55 mm, 
immediately after grinding the average diameter decreases by 0.22 mm for the fraction that 
will feed the plansifter compartment C1 (C1 Entrance). 
 The fraction C1M3 represents an oversized particles fraction with a high coating 
content. The mean particle size for C1M3 is 0.23 mm, but within this fraction about 80.2% 
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of the particles have dimensions of more than 0.18 mm. This fraction re-enters the grinding 
process at the M3 reduction roll. 
 The fraction C1M1B, also a refuse (of the second frames package), has an mean 
particle size of 0.24 mm, with a percentage of more than 83% from particles larger than 
0.18 mm. The representative category for this mixture of particles is that of dunsts. So, 
about 50% of these particles are harsh dunsts, and the remaining about 33% are fine dunsts. 
This fraction is combined with the remaining undersized particles from the semolina 
machines and, together, re-enters the grinding process at the M1B grinding roll. 
 The third fraction is also a refusal (of the last package of frames), from the category of 
dunsts-type products, have 11.8% particles larger than 0.18 mm. Having an average particle 
size of 0.16 mm, is grinded in the M2 reduction roll of the milling unit. 
 The two flours extracted in the compartment (the undersized particles from packages 3, 
4 and 5) have an mean particle size of 0.15 mm (C1F), respectively 0.17 mm (C1Fgrif). 
Fraction C1F is extracted as an undersized particles fraction of packages 3 and 4 and has 
63% of particles larger than 0,125 mm. Fraction C1Fgrif is a semolina flour and has most 
of the particles (over 64%) larger than 0.125 mm. 
 
Table 2. Weight values pi (%) of the fractions on the classifier sieves and of the cumulative weights 
Ti (%) for products collected at the inlet and at the 5 outlets of the plansifter compartment of the first 

technological passage, but also for the fraction that feeds the grinding roll M1B. 
 x 

(mm) 
M1B Entr. x 

(mm) 
C2 Entrance x 

(mm) 
C2M3 x 

(mm) 
C2M2 

p(%) T(%) p(%) T(%) p (%) T(%) p(%) T(%) 
0 0.000 0.40 0.00 0.000 7.70 0.00 0.000 1.70 0.00 0.000 3.00 0.00 
1 0.130 0.60 0.40 0.125 8.00 7.70 0.090 3.00 1.70 0.045 4.80 3.00 
2 0.180 3.90 1.00 0.180 23.80 15.70 0.125 27.00 4.70 0.063 5.10 7.80 
3 0.250 22.10 4.90 0.250 35.60 39.50 0.180 21.20 31.70 0.090 20.90 12.90 
4 0.315 48.90 27.00 0.315 21.90 75.10 0.200 37.40 52.90 0.125 55.80 33.80 
5 0.400 24.10 75.90 0.450 3.00 97.00 0.250 9.70 90.30 0.160 10.40 89.60 
dm dM1B.E = 0.36 d2E=0.26 mm d2M3=0.20 mm d2M2=0.13 mm 
 

 x 
(mm) 

C2Fgrif x 
(mm) 

C2F2 x 
(mm) 

C2F 
p(%) T(%) p(%) T(%) p(%) T(%) 

0 0.000 3.60 0.00 0.000 39.10 0.00 0.000 10.40 0.00 
1 0.045 8.80 3.60 0.090 20.60 39.10 0.045 22.90 10.40 
2 0.063 10.60 12.40 0.125 30.30 59.70 0.063 17.60 33.30 
3 0.090 18.50 23.00 0.160 5.20 90.00 0.090 29.60 50.90 
4 0.125 53.10 41.50 0.180 3.50 95.20 0.125 18.40 80.50 
5 0.180 5.40 94.60 0.200 1.30 98.70 0.160 1.10 98.90 
dm d2Fgrif = 0.13 mm d2F2=0.10 mm d2F = 0.09 mm 

 
 In table 2 is shown the results of the granulometric analysis for the fraction that feeds 
grinding roll M1B, and is then sorted in the plansifter compartment C2 and the dimensions 
of the sieve apertures used in the classifier. 
 Grinding roll M1B is, also, fed with the other part of the undersized particles from the 
two semolina machines (MG1 and MG2) from the reduction phase but also with the second 
refusal of compartment C1. This mixture of particles feeding the second grinding roll has 
most 95.1 % from particles larger than 0.25 mm. In generally, this particles represent the 
categories of dunsts (harsh dunsts- 70% and fine dunsts – 5 %) but small semolina particles 
are also found – 24.1%. After grinding, the mixture obtained (fraction C2 Entrance) it will 
be fed into the plansifter compartment C2 for separation on particle size fractions. After 
grinding, the percentage of particles larger than 0.18 mm decreases from 99% to 84.3% and 
represents particles in the categories small semolina – 5%, harsh dunsts – about 46 % and 
fine dunsts - about 33%. In this mixture there are also particles with dimensions below 0.18 
mm (about 15.7%) represented mainly, by the fractions C2F, C2F2 and C1Fgrif. It can be 
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of the particles have dimensions of more than 0.18 mm. This fraction re-enters the grinding 
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particle size of 0.24 mm, with a percentage of more than 83% from particles larger than 
0.18 mm. The representative category for this mixture of particles is that of dunsts. So, 
about 50% of these particles are harsh dunsts, and the remaining about 33% are fine dunsts. 
This fraction is combined with the remaining undersized particles from the semolina 
machines and, together, re-enters the grinding process at the M1B grinding roll. 
 The third fraction is also a refusal (of the last package of frames), from the category of 
dunsts-type products, have 11.8% particles larger than 0.18 mm. Having an average particle 
size of 0.16 mm, is grinded in the M2 reduction roll of the milling unit. 
 The two flours extracted in the compartment (the undersized particles from packages 3, 
4 and 5) have an mean particle size of 0.15 mm (C1F), respectively 0.17 mm (C1Fgrif). 
Fraction C1F is extracted as an undersized particles fraction of packages 3 and 4 and has 
63% of particles larger than 0,125 mm. Fraction C1Fgrif is a semolina flour and has most 
of the particles (over 64%) larger than 0.125 mm. 
 
Table 2. Weight values pi (%) of the fractions on the classifier sieves and of the cumulative weights 
Ti (%) for products collected at the inlet and at the 5 outlets of the plansifter compartment of the first 

technological passage, but also for the fraction that feeds the grinding roll M1B. 
 x 

(mm) 
M1B Entr. x 

(mm) 
C2 Entrance x 

(mm) 
C2M3 x 

(mm) 
C2M2 

p(%) T(%) p(%) T(%) p (%) T(%) p(%) T(%) 
0 0.000 0.40 0.00 0.000 7.70 0.00 0.000 1.70 0.00 0.000 3.00 0.00 
1 0.130 0.60 0.40 0.125 8.00 7.70 0.090 3.00 1.70 0.045 4.80 3.00 
2 0.180 3.90 1.00 0.180 23.80 15.70 0.125 27.00 4.70 0.063 5.10 7.80 
3 0.250 22.10 4.90 0.250 35.60 39.50 0.180 21.20 31.70 0.090 20.90 12.90 
4 0.315 48.90 27.00 0.315 21.90 75.10 0.200 37.40 52.90 0.125 55.80 33.80 
5 0.400 24.10 75.90 0.450 3.00 97.00 0.250 9.70 90.30 0.160 10.40 89.60 
dm dM1B.E = 0.36 d2E=0.26 mm d2M3=0.20 mm d2M2=0.13 mm 
 

 x 
(mm) 

C2Fgrif x 
(mm) 

C2F2 x 
(mm) 

C2F 
p(%) T(%) p(%) T(%) p(%) T(%) 

0 0.000 3.60 0.00 0.000 39.10 0.00 0.000 10.40 0.00 
1 0.045 8.80 3.60 0.090 20.60 39.10 0.045 22.90 10.40 
2 0.063 10.60 12.40 0.125 30.30 59.70 0.063 17.60 33.30 
3 0.090 18.50 23.00 0.160 5.20 90.00 0.090 29.60 50.90 
4 0.125 53.10 41.50 0.180 3.50 95.20 0.125 18.40 80.50 
5 0.180 5.40 94.60 0.200 1.30 98.70 0.160 1.10 98.90 
dm d2Fgrif = 0.13 mm d2F2=0.10 mm d2F = 0.09 mm 

 
 In table 2 is shown the results of the granulometric analysis for the fraction that feeds 
grinding roll M1B, and is then sorted in the plansifter compartment C2 and the dimensions 
of the sieve apertures used in the classifier. 
 Grinding roll M1B is, also, fed with the other part of the undersized particles from the 
two semolina machines (MG1 and MG2) from the reduction phase but also with the second 
refusal of compartment C1. This mixture of particles feeding the second grinding roll has 
most 95.1 % from particles larger than 0.25 mm. In generally, this particles represent the 
categories of dunsts (harsh dunsts- 70% and fine dunsts – 5 %) but small semolina particles 
are also found – 24.1%. After grinding, the mixture obtained (fraction C2 Entrance) it will 
be fed into the plansifter compartment C2 for separation on particle size fractions. After 
grinding, the percentage of particles larger than 0.18 mm decreases from 99% to 84.3% and 
represents particles in the categories small semolina – 5%, harsh dunsts – about 46 % and 
fine dunsts - about 33%. In this mixture there are also particles with dimensions below 0.18 
mm (about 15.7%) represented mainly, by the fractions C2F, C2F2 and C1Fgrif. It can be 

seen that if the mean diameter of the particle mixture that is fed into the M1B grinding roll 
is about 0.36 mm, immediately after grinding the mean diameter decreases by 0.10 mm for 
the fraction that will feed the plansifter compartment C2 (C2 Entrance). 
 First fraction extracted from compartment C2 (C2M3) represents a refusal (oversized 
particles) with a mean particle size of 0.20 mm, 68.3% of the particles from this fraction 
have dimensions over 0.18 mm, and re-enters the grinding process at the M3 reduction roll. 
 The fraction C2M2 is also an oversized fraction and have a mean particle size of 0.13 
mm, This fraction have more than 10 % of particles larger than 0.18 mm and has a high 
endosperm content.  
 The three flours extracted in the compartment have a mean particle size of 0.13 mm 
(C1Fgrif), 0.10 mm (C2F2) and 0.09 mm (C1F) respectively. 58.5% from C2Fgrif fraction 
particles (which is a semolina flour) is larger than 0.125 mm, compared to the C2F2 
fraction which has 40% in the same range and reaches 19% within the C2F fraction.  
 In table 3 are presented the values of the coefficients  and  of the Rosin-Rammler 
distribution function, and the correlation coefficient R2, values obtained from nonlinear 
regression analysis. 
 

Table 3. Values of the coefficients  and  of the Rosin-Rammler distribution function, and the 
correlation coefficient R2  

Fraction 
Coefficient 

M1A Entrance C1 Entrance C1M3 C1M1B C1M2 C1F C1Fgrif 
R(x), T(x) R(x), T(x) R(x), T(x) R(x), T(x) R(x), T(x) R(x), T(x) R(x), T(x) 

 0.018 0.088 0.001 0.002 1·10-5 4·10-4 6·10-6 
 -5.702 -1.468 -5.149 -4.124 -5.813 -3.843 -5.773 
R2 0.998 0.997 0.998 0.978 0.981 0.975 0.991 

Fraction 
Coefficient 

M1B Entrance C2 Entrance C2M3 C2M2 C2Fgrif C2F2 C2F 
R(x), T(x) R(x), T(x) R(x), T(x) R(x), T(x) R(x), T(x) R(x), T(x) R(x), T(x) 

 9·10-4 0.006 1·10-5 4·10-9 1·10-7 3·10-4 0.002 
 -6.301 -3.474 -6.716 -9.277 -7.503 -3.339 -2.367 
R2 0.999 0.986 0.997 0.982 0.954 0.985 0.981 

 
 As can be seen from the charts presented in figure 2, the majority of particles for some 
fractions have dimensions close to the min. value of sieves apertures. Other fractions have 
particles with mean dimensions close to the max. value of the sieve apertures. The 
experimental points are arranged to the left or right of the curve. At the same time, it can 
also be observed that the meeting point for the two particle size curves is rather towards the 
sieve with larger apertures. We refer here to the sieves used in particle size analysis. 
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Fig. 2. The particle size distribution curves given by Rosin-Rammler relations;  

______ - R(x); ______ - T(x) 
 
 The shape of the regression curves is correlated with the data from experiments. This 
shape depends on the weight of grist collected on the sieves used in the classifier for the 
particle size analysis.  

4 Conclusions 

For the two technological passages of the reduction phase analysed in this paper, we can 
say that the Rosin-Rammler law represents very well the experimental data, the correlation 
coefficient being of R2 ≥ 0.954. 

The degree of non-uniformity for the grist particles fractions is indicated by  
coefficient from the Rosin-Rammler equations. Form table 3 we can see that its values fall 
in a rather narrow range. This means that the fractions analysed were uniform, in terms of 
particle size. 

The Rosin-Rammler law used in the paper shows (for the 14 grist fractions analysed) a 
very good correlation with the experimental. Knowledge of the mean dimensions and size 
distribution, and the other physical characteristics of the grist fractions are also 
requirements for adjusting the machines from the flow, and in choosing the fabrics of the 
sieves from plansifter compartments, from the input to the compartment to the output. 

 
The paper was funded from the project „ Improving the base of practical applications in 
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Ministry of Education through the Executive Agency for Financing Higher Education, Research, 
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