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Abstract. The article discusses the practical application of the neural network for hydropower and water 

management systems. Various models of neural networks are understood, their advantages and 

disadvantages for a particular subject area. Method and operation of multiparametric neural network are 

described using practical examples, in particular, formation of interval estimates in reservoir of 

hydroelectric power station. 

Introduction  

Long-term forecasting of water inflows into 

hydroelectric reservoirs is challenging and challenging, 

especially in the face of global climate change. 

Currently, many approaches and methods have been 

developed to generate long-term estimates of time series, 

including in the GeoGIPSAR system developed at ESI 

SB RAS [1-11]. 

 Earlier methods relied on the identification of 

internal patterns in the form of probabilistic and 

approximative methods that allowed for fairly reliable 

predictive estimates before significant global climate 

changes occurred. The developed multivariable neural 

network (MNN) with many settings (the number of 

hidden layers and neurons in the layer, types of 

sigmoidal functions, etc.) allows you to take into account 

climate change by finding the most significant predictors 

for correlation. 

Classification of neural network models 

There are many types of neural networks, divided by the 

type of training (with the teacher, without the teacher), 

the type of input information (analog and binary), the 

method of adjusting weights (fixed, dynamic) and the 

model of the neural network used. The implementation 

of MNN was considered within the framework of the 

used models of some types of neural networks of 

different directionality and functioning. Figure 1 shows 

the diagram of neural networks shared according to the 

model used. 

 Single-layer perceptron is the simplest direct 

distribution network. This type of neural network 

practically performs the tasks of classification and 

approximation, is the first neural network model 

proposed by F. Rozenblatt [12]. The advantages of this 

network are the simplicity of implementing the model 

and a fast-learning algorithm. The disadvantage is the 

ability to solve only the simplest problems. The 

multilayer perceptron is a modified version of the single-

layer perceptron, so it makes it possible to build more 

complex networks. Radial basis networks (RBF 

networks) are a subspecies of direct-acting neural 

networks that use radial basis functions as activation 

functions [13].  

 

 
Fig. 1 Neural network models 

 Competitive neural networks are a specific 

subspecies of recurring neural networks consisting of 

two NS models: generating and discriminative. The goal 

of the generating model: to give such a result, which is 

as similar as possible to the original, and discriminative 

model: to distinguish the result of the generating model 

from the original as effectively as possible [14]. This 

subspecies of neural networks is effective in the field of 

cybersecurity. One of the disadvantages is the need to set 

up two models and balance for effective training. 

 The Kohonen network uses uncontrolled learning 

and the learning set consists of input values   of 

variables. Due to the presence of only two layers (input 

and output), network data is called self-organized maps. 

The advantages of these networks are that they are able 

to operate under obstacles. The disadvantage is only the 

limitation of the application area, namely cluster analysis 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/). 

E3S Web of Conferences 289, 01003 (2021) https://doi.org/10.1051/e3sconf/202128901003
Energy Systems Research 2021

mailto:berdvm98@gmail.com


and only if the number of clusters is known in advance 

[15]. 

 The Hopfield network is an associative network 

based on analogies of dynamic system physics. At the 

time of receiving the input, each node is an input, 

becomes hidden during learning, and then becomes an 

output [16]. The advantage of these networks is the 

presence of a processing algorithm that allows you to get 

out of the local minima of the adaptive terrain of the 

state space. 

 Models of adaptive resonance theory (ART) use 

uncontrolled learning, analyze significant input data, 

identify possible features and classify images in the input 

vector [17]. The advantage of these networks is the 

ability to teach the network "without a teacher." A 

disadvantage of this kind of network is the unlimited 

increase in the number of neurons during functioning. 

Methods and Methodology 

The methodology for long-term forecasting of natural 

processes was developed by I.P. Druzhinin and A.P. 

Reznikov[18-20] through the identification of hidden 

patterns in accumulated statistics, with the help of which 

it becomes possible to predict the dynamics of changes 

in natural processes in the long term. To account for 

global climate change, MNN has been developed based 

on the formation of prognostic estimates through the use 

of different sets of predictors. 

 For the synthesis of MNN on tributary prediction, a 

structure has been developed that includes many 

predictors (time series) for various indicators and 

different advance rates from the 1st month to several 

years. The choice of predictors is based on the use of 

significant correlations of the time series under study 

with the dynamics of change in other processes in 

different regions of the world and with varying advance. 

One important type is the calculation of the average rotor 

index of the vector field of atmospheric circulation 

speeds for a given period of atmospheric layer data with 

indication of coordinates of a rectangular region. 

 The ability to adjust thresholds of meaningful 

associations as potential predictors (positive and 

negative) allows for more accurate selection of 

indicators for further use. Based on the correlation result, 

it is assumed whether the indicator in some geographical 

square affects a particular time series (Fig. 2). 

Each set of obtained predictors is obtained individual for 

each time series. When implementing a single set of 

predictors for multiple time series, it causes a prediction 

error due to various kinds of noise in the operation of the 

MNN. 

 A feature of the MNN is the ability to tune not only 

to specific values   of the process under study, but also to 

interval estimates, which allows reducing interference or 

errors associated with recording indicators in the past 

(for example, an error in determining the value of the 

useful inflow into Lake Baikal can reach several percent 

even in modern conditions). 

 

 
Fig. 2 Example of formation of regions with significant 

correlation coefficients for useful inflow to Lake Baikal and 

swirl indices for July with advance equal to zero on atmosphere 

layer 500 GPa 

 Among the many known models of neural networks 

(Fig. 3), MNN was developed on the basis of multi-

layered perceptron’s. This type of network has shown 

itself well in the framework of forecasting interval 

estimates of the hydroelectric reservoir. In combination 

with portable technologies implemented in ESI SB RAS, 

the output is fairly detailed and understandable values   

of predictive estimates. 

 The neural network is implemented on the basis of 

the mechanism of reverse error propagation with the help 

of a teacher and can include up to 10 (hidden) layers 

with many different types of neurons in the layer. The 

main idea of   the mechanism is to propagate error 

signals from the outputs of the network to its inputs, in 

the direction of reverse direct propagation of signals in 

the normal mode of operation. 

Software Description  

The process of functioning of MNN (Fig. 3) is tied to the 

formation of a set of potential predictors from a set of 

geoclimatic indicators with an input threshold 

correlation. The formation takes place using scripts 

written in LuaESI (Lua universal language with 

powerful libraries developed at ESI). When processing a 

set of predictors, the MNN model is generated with the 

specified input parameters. The core of the network is 

implemented in C using various auxiliary libraries. 

Initialization, training, verification, and prediction 

processes function as APIs. MNN results in probability 

matrices on training, verification and prognostic 

samples. The obtained matrices are accumulated taking 

into account various MNN settings and sets of 

predictors, and later, on the basis of accumulated 

variants of prognostic intervals, a final prognostic 

decision is made 

 An example of the interval representation of the 

investigated process is given in Figure 4. The parameters 

of spacing are: the range of values   close to the norm in 

the form of a fraction of the standard deviation; the 

number of intervals is higher and lower than normal. 
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Fig. 3 Diagram of multi-parameter neural network (MNN) 

operation 

 The multi-parameter HC is located in the Far 

Manager environment. To configure the MNN on the 

forecast of the new process, you must create a single 

configuration file (SCF) in the Scite text editor with 

internal MNN settings. MNN settings include: setting 

predicted time series, the number of MNN layers and 

neurons in the layer, the number of output prognostic 

intervals, the range of years for training and verification 

samples, the parameters of the coefficients of the 

activation and interval partition function and the set of 

input predictors. This SCF is broken down by the MNN 

core into variables necessary for its operation. A 

prognostic estimate divided into intervals is converted 

into an output graph using the GNU plot graphic editor. 

Application Examples  

As an example of the application of MNN, predictive 

estimates of the water content of the hydroelectric 

reservoir for July, August and September 2021 are 

presented. For each calculation period, a set of predictors 

is compiled, calculated by the method of maximum 

modulo correlation of the swirl index to the target time 

series. The number of elements in the set can vary from 

several tens to several hundred, and the presence of a 

huge set of predictors does not guarantee a 100% 

prediction result, but can reduce the error on verification 

and prognostic samples to a minimum. For each 

calculation period, more accurate adjustment of MNN is 

carried out empirically (setting the number of layers, 

neurons in the layer and output intervals, determining 

optimal training and verification samples, determining 

the value of the activation function, interval 

displacement coefficient, etc.). The task of using MNN 

is to obtain optimal values on the verification sample. 

 When generating long-term estimates of water 

inflows using MNN, a minimal error is easily achieved 

on the training sample. On verification samples, errors 

are usually much larger. The interval division of the 

possible range of parameter change, sufficient for 

practical application, can be from 3 intervals. Dividing 

the range of values   into five intervals is usually: 2-

extremely high, 1-increased, 0-medium, -1-reduced, -2-

extremely low. As a rule, the results of MNN training 

with interval errors of no more than one interval on 

verification samples are considered acceptable. Splitting 

into more intervals implies a more accurate estimate of 

the forecast, but at the same time there is a need for more 

accurate adjustment of the estimated intervals. 

 

 
Fig. 4 Example of generation of prognostic interval 

estimates with the help of MNN a) -division into 5 

intervals for July 2021, b) -division into 7 intervals for 

August 2021, c) -division into 9 intervals for September 

2021. 

 In the examples given, the average monthly inflow 

time series is divided into 5.7.9 intervals (Fig. 4, a, b, c,). 

Green indicates a zone with inflow values close to 

normal. The blue line indicates the actual values, "+" are 

the average values obtained by MNN as a result of 

training (from 1980 to 2011). Rhombs and rectangles 

indicate the values   of the trained MNN obtained on the 
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verification sample. The difference between them is that 

rhomb’s indicate values with a probability less than 0.8. 

The results given in this example show an error on the 

verification sample of not more than 1 interval, which 

indicates a good result of training. For July 2021, the 

likely outcome is that the water in the reservoir is close 

to normal values. For more accurate estimates, an 

increase in the number of output intervals is used. 

Conclusion 

The presented methodology of MNN operation allows to 

generate prognostic intervals of water inflows to 

hydroelectric reservoirs with different advance time: 

from a month to several years, provided that a 

representative set of predictors is found from the 

database of geoclimatic indicators of the state of the 

atmosphere. 
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