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Abstract. The Kaczmarz method is presented for solving saddle point systems. The convergence is analyzed. 
Numerical examples, compared with classical Krylov subspace methods, SOR-like method (2001) and recent 
modified SOR-like method (2014), show that the Kaczmarz algorithm is efficient in convergence rate and 
CPU time. 

1 Introduction 
A block 2 × 2 linear system of the form 

� 𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵T 0� �

𝑥𝑥𝑥𝑥
𝑦𝑦𝑦𝑦� = �𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞�                        (1) 

where A∈Rm×m and B∈Rm×n, called a saddle point 
system,  arises in a wide variety of technical and scientific 
applications such as constrained optimization, the finite 
element method to Stokes equations, fluid dynamics and 
weighted linear least squares problem [2]. In 2001,  Golub,   
Wu and Yuan [6] proposed the SOR-like method for 
solving symmetric augmented linear system (1).   Then, 
many improved numerical methods are suggested [1, 10, 
13].  Benzi,  Golub  and Liesen [2]  also gave a review on 
numerical solution of saddle point problems in 2005. Pan,  
Ng and Bai [9] developed a deteriorated positive-definite 
and skew-Hermitian splitting (DPSS) preconditioner for 
nonsymmetric saddle point system (1), based on which, a 
series of DPSS-type methods [3, 4, 12] are investigated. 

The Kaczmarz algorithm is a popular iterative 
projection method [11] as it is simple to implement and 
the convergence is superior to classical splitting iterative 
methods such as SOR-like method.  Many authors studied 
Kaczmarz methods for solving linear systems [7, 8, 11]. 
In this paper, the Kaczmarz algorithm is presented for 
symmetric saddle point system (1) with numerical 
comparisons to classical Krylov subspace methods [5]  
and  splitting  iterative methods SOR-like  [6]  (2001) and 
modified SOR-like [12] (MSOR-like, 2014). 

The rest of this paper is organized as follows. In 
Section 2, the Kaczmarz method is presented and the 
convergence is analyzed. In Section 3, numerical 
examples are provided to show the effectiveness and 
efficiency of the algorithm. In Section 4, concluding 
remarks are drawn. Throughout the paper, I denotes the 
identity matrix. 

 

2 Kaczmarz method 

For saddle point problem (1), where A ∈Rm×m is 

symmetric positive definite, and B∈Rm×n is of full 
column rank, Kaczmarz method can be proposed as 
follows, 
 

KACZMARZ METHOD. Given initial vectors x0∈Rm 

and y0∈Rn, for k = 0, 1, 2, ·  ·  ·  , the following iterative 

scheme is taken,  

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘+1 = 𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 +

𝑞𝑞𝑞𝑞�𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘�−�𝐵𝐵𝐵𝐵T�
�𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘�𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘

��𝐵𝐵𝐵𝐵T��𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘��
2

2 �(𝐵𝐵𝐵𝐵T)(𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘)�T,

𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘+1 = 𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘 +
(𝑏𝑏𝑏𝑏−𝐴𝐴𝐴𝐴𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘+1)�𝑗𝑗𝑗𝑗𝑘𝑘𝑘𝑘�−𝐵𝐵𝐵𝐵�𝑗𝑗𝑗𝑗𝑘𝑘𝑘𝑘�𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘

�𝐵𝐵𝐵𝐵�𝑗𝑗𝑗𝑗𝑘𝑘𝑘𝑘��
2

2 �𝐵𝐵𝐵𝐵(𝑗𝑗𝑗𝑗𝑘𝑘𝑘𝑘)�T,
           (2)  

where ik=(k mod n)+1, jk=(k mod m)+1, (·)(ik) and (·) (jk) 
denote the ikth row and jkth row of a matrix. 

 
The convergence result for method (2) is as the 

following theorem. 
Theorem 2.1. Suppose that saddle system (1) is 

consistent. Then the iteration sequence ��
𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘
𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘��𝑘𝑘𝑘𝑘=0

∞
, 

generated by the Kaczmarz method (2) starting from an 
initial guess �

𝑥𝑥𝑥𝑥0
𝑦𝑦𝑦𝑦0� with x0 in in the column space of B and 

y0 in the column space of BT, converges to the unique 

least-norm solution �𝑥𝑥𝑥𝑥
∗

𝑦𝑦𝑦𝑦∗� = � 𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵T 0�

†
�𝑏𝑏𝑏𝑏𝑞𝑞𝑞𝑞� of (1), where 

(∙)† indicates the Moore-Penrose inverse of a matrix. 
Moreover, the solution error for the iteration sequence is 
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‖𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘+1 − 𝑥𝑥𝑥𝑥∗‖22 ≤ �1 −
𝜆𝜆𝜆𝜆min(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵T)
‖𝐵𝐵𝐵𝐵‖𝐹𝐹𝐹𝐹2

� ‖𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥∗‖22,

‖𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘+1 − 𝑦𝑦𝑦𝑦∗‖2 = �1 −
𝜆𝜆𝜆𝜆min(𝐵𝐵𝐵𝐵T𝐵𝐵𝐵𝐵)
‖𝐵𝐵𝐵𝐵‖𝐹𝐹𝐹𝐹2

(‖𝑦𝑦𝑦𝑦𝑘𝑘𝑘𝑘 − 𝑦𝑦𝑦𝑦∗‖2

                           +�𝜆𝜆𝜆𝜆max(𝐴𝐴𝐴𝐴T𝐴𝐴𝐴𝐴)‖𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝑥𝑥𝑥𝑥∗‖2),

 

where λmin(·) and λmax(·) are the the smallest and 
largest nonzero eigenvalues of a matrix. 

3 Numerical experiments 
Two numerical examples are discussed using Kaczmarz 
algorithm (2) compared with the classical SOR-like 
method [6], recent MSOR-like method [12] and Krylov 
subspace methods with preconditioner 

𝑃𝑃𝑃𝑃 = ��̂�𝐴𝐴𝐴 0
0 �̂�𝑆𝑆𝑆

�                                  (3) 

where Â = diag(A) and Ŝ = BTÂ−1B [5] for solving 
symmetric saddle system (1). All runs are performed in 
MATLAB 7.12 on an Intel Core CPU 2.80 GHz (8.00 GB 
RAM) Windows 7 system. 

The first example is for solving weighted least squares 
problem [10]. 

Example 3.1. The weighted linear least squares 
problem 

Find:  x∗ so that: ‖𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥∗ − 𝑏𝑏𝑏𝑏‖𝐴𝐴𝐴𝐴−1
2 = min

𝑥𝑥𝑥𝑥∈𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛
 ‖𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥 − 𝑏𝑏𝑏𝑏‖𝐴𝐴𝐴𝐴−1

2 , 

induces the following saddle point system 

� 𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵T 0� �

𝑧𝑧𝑧𝑧
𝑥𝑥𝑥𝑥� = �𝑏𝑏𝑏𝑏0�,                        (4) 

where 𝑧𝑧𝑧𝑧 = 𝐴𝐴𝐴𝐴−1(𝑏𝑏𝑏𝑏 − 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥). 
With 𝐴𝐴𝐴𝐴 = tridiag(1,2,1) ∈ 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚×𝑚𝑚𝑚𝑚 and 𝐵𝐵𝐵𝐵 = 𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚 , the 

Kaczmarz method is applied to problem (4). Take 
𝑄𝑄𝑄𝑄 = 𝐵𝐵𝐵𝐵T𝐵𝐵𝐵𝐵  as in [6] and the optimal parameter 𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏  for 
SOR-like and MSOR-like methods. The numerical results 
are listed in Table 1, where the norm of absolute residual 
vectors is defined as 

𝑟𝑟𝑟𝑟 = �‖𝑏𝑏𝑏𝑏 − 𝐵𝐵𝐵𝐵𝑥𝑥𝑥𝑥𝑘𝑘𝑘𝑘 − 𝐴𝐴𝐴𝐴𝑧𝑧𝑧𝑧𝑘𝑘𝑘𝑘‖22 + ‖𝐵𝐵𝐵𝐵T𝑧𝑧𝑧𝑧𝑘𝑘𝑘𝑘‖22, 

the initial vector is taken as 

�
𝑧𝑧𝑧𝑧0
𝑥𝑥𝑥𝑥0� = 0, 

and all runs terminate if 𝑟𝑟𝑟𝑟 ≤ 10−7. 
Table 1 shows that Kaczmarz method converges faster 

than MSOR-like and SOR-like methods with the optimal 
parameter 𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏 , that is, Kaczmarz method needs much 
fewer iterations and much less CPU time and and has 
much higher precision than MSOR-like and SOR-like 
methods which have similar convergence. 

Next example in [1] is for solving the Stokes problem. 
Example 3.2. Consider Stokes problem: find u and p 

such that 

⎩
⎨

⎧
−𝜇𝜇𝜇𝜇∆u + ∇𝐩𝐩𝐩𝐩 = 𝑓𝑓𝑓𝑓, in Ω,

∇𝐮𝐮𝐮𝐮 = 𝑔𝑔𝑔𝑔, in Ω,
𝐮𝐮𝐮𝐮 = 0, on ∂Ω,

∫Ω 𝐩𝐩𝐩𝐩(𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 0,

                   (5) 

where Ω = (0,1) × (0,1) ⊂ R2, ∂Ω is the boundary of Ω, ∆ 
is the componentwise Laplace operator, u is a vector-
valued function representing the velocity, and p is a scalar 
function representing the pressure. By discretizing (5) 
with the upwind scheme, the following saddle point 
system of linear equations is obtained: 

� 𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵
𝐵𝐵𝐵𝐵T 0� �

u
p� = �𝑓𝑓𝑓𝑓𝑔𝑔𝑔𝑔�.                        (6) 

In the experiment, the right hand side of 𝑓𝑓𝑓𝑓 and 𝑔𝑔𝑔𝑔 is 
chosen such that the exact solution of (6) 

�u*

p*� = �
1
1
⋮
1
� ∈ 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚+𝑛𝑛𝑛𝑛, 

with 

𝐴𝐴𝐴𝐴 = �𝑰𝑰𝑰𝑰⨂𝑻𝑻𝑻𝑻 + 𝑻𝑻𝑻𝑻⨂𝑰𝑰𝑰𝑰 𝟎𝟎𝟎𝟎
𝟎𝟎𝟎𝟎 𝑰𝑰𝑰𝑰⨂𝑻𝑻𝑻𝑻 + 𝑻𝑻𝑻𝑻⨂𝑰𝑰𝑰𝑰� ∈ 𝑅𝑅𝑅𝑅

2𝑞𝑞𝑞𝑞2×2𝑞𝑞𝑞𝑞2 ,

𝐵𝐵𝐵𝐵 = 𝐼𝐼𝐼𝐼 ∈ 𝑅𝑅𝑅𝑅2𝑞𝑞𝑞𝑞2×2𝑞𝑞𝑞𝑞2 ,
 

and 

𝑇𝑇𝑇𝑇 =
1
ℎ2 ∙ tridiag(−1, 2,−1) ∈ 𝑅𝑅𝑅𝑅𝑞𝑞𝑞𝑞×𝑞𝑞𝑞𝑞 , 

Table 1: Iterations (IT), CPU time (CPU) and absolute residual (r) for Example 3.1 

m(n) 
Kaczmarz MSOR-like SOR-like 

IT CPU r IT CPU r IT CPU r 

20 20 0.0004 7.7×10−15 152 0.0027 9.6×10−8 165 0.0031 9.7×10−8 

200 200 0.0177 5.7×10−12 1746 0.2118 9.9×10−8 1733 0.2077 9.9×10−8 

2000 2000 29.2106 3.8×10−9 18404 627.1635 1.0×10−7 18386 626.4071 1.0×10−7 

 

where ⊗ denotes the Kronecker product, ℎ = 1
𝑞𝑞𝑞𝑞+1

 is the 

discretization mesh size, and the relative error is defined 
as 

ERR =
�‖𝐮𝐮𝐮𝐮𝒌𝒌𝒌𝒌 − u*‖22 + ‖𝐩𝐩𝐩𝐩𝒌𝒌𝒌𝒌 − p*‖22

�‖u*‖22 + ‖p*‖22
. 

2
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With m = n = 2q2, the initial vector 

�
𝐮𝐮𝐮𝐮0
𝐩𝐩𝐩𝐩0� = 0 

and all runs terminated if ERR≤ 10−7 , the numerical 
results are listed in Table 2, where Q = BTB and 𝜔𝜔𝜔𝜔 = 𝜔𝜔𝜔𝜔𝑏𝑏𝑏𝑏 
(the optimal) for SOR-like and MSOR-like. 

From the numerical results in Tables 2 and 3, it can be 
seen that the Kaczmarz method is superior to MSOR-like 
and SOR-like methods with the optimal parameter ωopt 
and the classical Krylov subspace methods, which is also 
shown from Table 1 in Example 3.1. Obviously, the 
Kaczmarz method requires fewer iterations and less CPU 
time and has higher precision than MSOR-like and SOR-
like methods. 

Table 2: Iterations (IT), CPU time (CPU) and absolute residual (r) for Example 3.2 

m(n) 
Kaczmarz MSOR-like SOR-like 

IT CPU r IT CPU r IT CPU r 
242 483 0.0327 0 1281 0.1222 1.0×10−7 4120 0.1383 1.0×10−7 

648 1295 0.1522 0 2987 6.6767 1.0×10−7 9680 3.9641 1.0×10−7 

1250 2499 2.1855 0 5419 48.9726 1.0×10−7 19786 32.5917 1.0×10−7 

Table 3: Krylov subspace methods for Example 3.2 

m(n) 242 648 1250 

method IT CPU r IT CPU r IT CPU r 
bicg 55 0.0789 3.7×10−8 186 1.3151 3.2×10−8 401 9.0979 5.9×10−8 

bicgstab 139 0.1394 4.6×10−8 772 4.4161 9.0×10−8 - - - 

bicgstabl 60 0.1362 4.4×10−8 276 3.3722 9.2×10−8 623 24.9574 9.8×10−8 

cgs - - - - - - - - - 

gmres - - - - - - - - - 

lsqr 9 0.0539 8.0×10−11 10 0.4050 3.5×10−10 - - - 

minres 1602 0.5708 9.9×10−8 3115 8.4035 9.9×10−8 5114 48.5307 1.0×10−7 

pcg - - - - - - - - - 

qmr 57 0.0903 1.1×10−8 189 1.3779 4.0×10−8 414 9.5015 9.9×10−8 

symmlq 4084 1.8005 9.6×10−8 5062 13.3150 9.6×10−8 4089 39.1793 9.3×10−8 

tf qmr - - - - - - - - - 

All tests use Matlab built-in  iterative solvers and the preconditioner is taken as (3). 

 

4 Conclusion 
In this paper, the Kaczmarz method is suggested for 
solving symmetric saddle point system, which is a popular 
iterative projection method and does not need 
multiplications of matrix and vector (different to classical 
splitting iterative method), thus easy to implement and 
more efficient. Numerical examples show that the 
Kaczmarz algorithm is much faster than the classical 
Krylov subspace methods and splitting iterative methods 
SOR-like and recent MSOR-like and has higher precision 
for a special case where B = I. As for general cases, 
additional techniques are expected, which will be 
presented in further work. 
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