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Abstract. In this paper, a technique to determine complicated stress intensity factors on three-dimensional 
components, which based on the conservation law and the elementary mechanics is proposed, it only needs 
the geometric relationship between multiple singular stress fields from the crack section, and obtaind the 
relationship between the stress at different crack tips. In the expression of the stress intensity factor K, K is 
proportional to the stress σ at the crack tip, and we can get the supplementary equation of between different 
stress fields K according to the ratio of the stress at the crack tip, then use the J-integral method to calculate 
the stress intensity factors of different stress fields. In order to verify the feasibility of this method, a cracked 
R-fluted shells model was constructed. Under the action of the bending moment, the corner crack propagation 
is simulated through the reserved corner crack, and two crack tips with different stress fields are generated 
during the simulation. The experimental result indicates that the proposed method is effective for cracked R-
fluted shells. It is also shown that the method has universal applicability for solving complex stress intensity 
factors on three-dimensional components. 

1 Introduction 
R-fluted shells are widely used in engineering structures, 
and cracks and similar cracks are common defects. The 
cracked R-fluted shells is a typical three-dimensional 
structure. Regarding infinite two-dimensional (2d) and 
three-dimensional (3d) elastomer crack problems, the 
closed solutions of SIFs can be conveniently given. 
However, for cracked slender R-fluted shells,which 
belongs to the three-dimensional (3d) problem with finite 
boundaries, In addition to numerical methods, it is 
difficult to get the analytical solutions. For cracked 
beams-like structures, much effort had been done to find 
the simple methods solving the SIFs. In 1986, a simple 
method for close approximation of stress intensity factor 
in cracked beams was proposed by Kienzler and 
Herrmann [1-2]. Kienzler and Herrmann assumed, 
without specific justification, that the strain energy release 
rate G for crack extension is equal to that for crack 
widening, thereby using Irwin’s G-K relation to determine 
the SIFs. In 1990, Bazant [3] indicated that this 
assumption is approximately valid within a correction 
factor, and claimed this can only be determined through 
optimum fitting of the exact solution. On the basis of 
previous researchs, Gao and Herrmann [4] showed that 
this correction factor can be obtained through simple 
asymptotic matching with standard limiting crack 
solutions in 1992. They also made some corrections and 
clarifications for estimation of the stress intensity factor 
of axial-symmetrically cracked beams. Dunn et al.[5] in 
1997, based on the elementary strength theory for cracked 

beams forwarded by Gao and Herrmann, presented a 
simple, closed-form expressions for stress intensity 
factors for cracked I-beams subjected to a bending 
moment. In 2006, by estimating the SIFs of cracked T-
beams and bars, Ricci and Viola [6] presented an 
extension of a simple and convenient method formerly 
proposed by Kienzler and Herrmann. In 1998, Based on 
the three-dimensional (3d) conservation law and the 
virtual work principle, Xie et al. [7-8], proposed the J2-
integral theory, which greatly simplified the analysis of 
the stress intensity factor for cracked slender structures. 
The Xie’s approach had been extended by Dotti et al. [9-
10] as an important contribution to determine the mode-I 
stress intensity factor of the cracked thin-walled beam. 
Nobile [11-12], Kolitsch et al. [13], Livieri [14] and 
Alijani et al. [15], also made some efforts to utilize the 
simple engineering method to calculate the SIFs. 

Since the J2 integral has obvious simplicity and 
accuracy in solving the stress intensity factor of a three-
dimensional cracked shell structure, it is widely used to 
solve the SIF of cracked hollow shaped pipes, pipes and 
other engineering components[16-18]. However, the J2-
integral can only provide one equation, which may be 
used to solve one unknown stress intensity factor, 
including some cases of multiple similar cracks with the 
same SIFs in a cross-section [19-20]. Obviously, it is not 
enough for engineering applications. Nearly all the 
cracked beams and slender structures concerning multiple 
and different singular stress fields in a cross-section had 
been sidestepped [21]. In the present work, based on the 
assumption that flat cross-sections remain plane in the 
elementary mechanics, some supplementary equations, 
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together with the J2-integral, can be effectively used to 
solve the SIFs corresponding to multiple and different 
singular stress fields, such as the SIFs of slender R-fluted 
shells with periodic cracks, such as the circumferential 
corner cracks and inner corner cracks. It is worth noting 
that all the analysis and calculations of present method are 
within the scope of elementary strength of materials and 
the error is acceptable in practice. 

2 Configuration of slender R-fluted shell 
Fig. 1 gives a case of four periodic corner cracks in 
slender R-fluted shell under bending. There are eight 
crack tips with different singular stress fields, each of 
which has typical features of two-dimensional singular 
stress field in plane strain state. The x2 - x3 plane in Fig. 1 
is a symmetry plane for cracked shell, and all loads act in 
this plane; hence the bending deflections will take place 
in this plane also. Obviously, when lb >> B >> t the 
deformation of the shell possesses the characteristics of 
the three-dimensional shell and the slender beam. 
Therefore, the stress intensity factors can be obtained by 
the conservation law and the bending theory in the 
material mechanics. 

 
(a) 

 
(b) 

Figure 1. Periodic cracks of R-fluted shell under bending. 

3 J2-integral and stress intensity factors 

Considering a three-dimensional strain field, for which 
the displacement vector ui depends on x1, x2, x3 as shown 
in Fig. 2, from the conservation law, J2-integral can be 
defined as [7]. 

  - 0 1, 2,3j j i i j
Ω

J w T u dΩ j   ， ，n
 

(1) 

where Ω in Eq. (1) denotes an arbitrary closed surface in 
the solids without defects; w is the strain energy density; 
Ti is the stress vector acting on the outer side of Ω; n is the 
unit outward normal to Ω. 

For a two-dimensional deformation field. along the 
path Sab and Sbc , Eq. (1) yields[7]： 

 
Figure 2. Integration path around crack tip region. 

4 SIFs for a R-fluted shell with circum-
ferential periodic cracks under bending 

4.1 Configuration of circumferential periodic 
cracks in four corners of R-fluted shell 

 
(a) 

 
(b) 

Figure 3. Elliptical modelling for cracks with d→0. 
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Figure 4. Local integral surfaces within the K-dominant 

regions. 
 
A cracked R-fluted shell is shown in Fig. 1. The x1, x2 
plane in Fig. 1 is a symmetrical plane of the shell, and all 
the loads act in this plane. t is the thickness of the shell, a 
is the length of the crack, where lb >> t, lb is the cross-

section length of shell, B is the cross-section width of shell, 
M is the axial moment. 

Fig. 1 shows a three-dimensional closed surface 
Aclosed 
   (2) 

where the symbol ‘+’ denotes the cracked cross 
section;‘-’ denotes the remote uncracked cross section; 
Ain is the inner surface of shell; Aout is the outer surface 
of shell; Ac is the sum of the four crack surfaces. Since Ain 
and Aout is free surface, Ti = 0 and n2 = 0. following results 
can be found 
    

in out

2 2 2 2- - 0i i i i
A A

wn Tu dA wn Tu dA  ， ，
  (3) 

According to beam theory, for the surfaces A- and A+, 
it is not difficult to get 
   - - -

2 2- - -
2i iA

Mwn Tu dA w M 


   ，
  (4) 

    (5) 

where   is the axial curvature of the R-fluted shell,  
is the strain energy density per unit length， n is unit 
outward normal to surface A in Eqs. (4) and (5). In the 
remote transverse cross-section, the curvature of the axis 
is 
    (6) 

where the moment of inertia I = B4/12-πD4/64-
2(πD4/128-8πR4/9π2+πR2/2(B/2- 4R/3π)2) and D =2R. If 
the crack is formed from an 1/4 ellipse with d→0 as 
shown in Fig. 3, the R-fluted shell can be regarded as a 
variable cross-section beam, and the mean curvature at the 
cross section becomes 

    (7)

Where by introducing the integral variable ξ =x2/d, 
 

(8) 
Additionally, in cracked cross sectional area, there are 

eight asymptotic singular stress fields next to the crack tip 
zone, i.e. , b, b´, e, e´, q, q´, m, m´ as shown in Fig. 4. for 
which the SIFs can be expressed by KIb = KIe = -KIb´ =-
KIe´, KIq = KIm= -KIq´= -KIm´, The crack surface Ac can be 
divided into K-dominants (Ac1) and free surface (Ac2), i.e., 
Ac = Ac1 + Ac2., it is not difficult to get 

(9) 

Taking the three-dimensional J2-integral over Aac as 
shown in Fig. 4 for example, by using the conservationlaw 
and Eqs. (1),then, 

  

(10) 
  

(11) 
Then, from Eqs. (9)-(11), the J2-integral over Ac 

becomes 

 

    (12) 

Substituting the Eqs. (3)-(5) and Eq. (12) into Eq. (1), 
the J2-integral over the closed surface Aclosed can be 
expressed as 

coutinclosed AAAAAA  
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     (13)
 

4.2 Supplementary equation of SIFs 

Since J2-integral provide only one equation that contains 
two different SIFs, as indicated by Eq.(13), more equation 
is needed to solve these SIFs. For a R-fluted shells under 
pure bending, the distribution of the normal stress is 
schematically shown in Fig. 5. based on the elementary 
mechanics and σ=My/I, at the crack tips e and m as shown 
in Fig. 4, σe / σm can be found as 

 
Figure 5. Distribution of the normal stress for a slender R-

fluted shell under pure bending. 

            (14)
 

Referring to above equations and , KIe and 
KIm can be expressed as 

            (15)
 

4.3 Normalized SIFs 

Solving the Eqs. (13) and (15) and by using Eqs. (6) and  
(7), the J2-integral over the closed surface can be 
expressed as 

    (16)
 

where   is a small quantity and can be 

neglected. Hence, fe(a/B) and fm(a/B) can be found as 

  (17)
 

(18)
 

where σ0 = MB/2I, fe(a/B) and fm(a/B) is the normalized 
SIFs of KIe and KIm respectively. 

The mode I SIFs KIe and KIm were calculated also by 
using XFEM in the commercial software Abaqus, in 
which the C3D20 type element is employed. The slender 
R-fluted shell possesses both shell and beam 
characteristics, so the geometrical dimension of the 
slender R-fluted shell considered were lb = 100 mm, B = 
25 mm, t = 1 mm, R = 5 mm, E = 200 GPa and μ = 0.3. 
The comparisons of the value of FEM and present method 
are as shown in Table. 1 and Table. 2 , the comparisons on 
the results of Eq. (17) and Eq. (18) with the finite element 
analysis are as shown in Fig. 6. 

Table1. Comparisons of the value of FEM and Present method(fe) 

a/B 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

FEM 0.025 0.056 0.162 0.270 0.370 0.520 1.000 2.300 6.012 11.040 

Present method 0.026 0.054 0.130 0.260 0.340 0.500 0.910 1.800 5.100 10.110 

Table2. Comparisons of the value of FEM and Present method(fm) 

a/B 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

FEM 3.21 5.19 7.01 8.09 8.74 8.78 8.19 7.05 4.15 - 

Present method 3.71 5.76 7.50 8.19 8.94 8.58 8.00 6.85 3.95 0 
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(a) 

 
 (b) 

Figure 6. The normalized SIFs. 

5 Conclusions 
This paper draws the following conclusions: 

(1)It is proved that J2-integral and the assumption that 
plane cross-sections remain plane in the elementary 
mechanics is feasible for estimate the different SIFs for R-
fluted shells with multiple cracks under bending.  

(2)The simple relationship between different stress 
intensity factors can be found based on the elementary 
mechanics and σ=My/I, which provides an idea for 
solving the problem of stress intensity factors 
corresponding to complex stress fields. 

(3) This method simplifies the solution of SIFs of 
cracked engineering structures with complex cracks and 
all analyses and calculations of the method are within the 
scope of elementary mechanics. This method is flexible 
and the error is acceptable in practice. 
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