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Abstract.
Nowadays, the kernel methods are increasingly developed, they are a significant source of advances, not only
in terms of computational cost but also in terms of the obtained efficiencies in solving complex tasks, they are
founded on the theory of reproducing kernel Hilbert spaces (RKHS). In this paper, we propose an algorithm
for recursive identification of finite impulse response (FIR) nonlinear systems, whose outputs are detected
by binary value sensors. This algorithm is based on a nonlinear transformation of the data using a kernel
function. This transformation performs a basic change that allows the data to be projected into a new space
where the relationships between the variables are linear. To test the accuracy of the proposed algorithm, we
have compared it with another algorithm proposed in the literature, for that, we employ the practical frequency
selective fading channel, called Broadband Radio Access Network (BRAN). Monte Carlo simulation results,
in noisy environment and for various data length, demonstrate that the proposed algorithm can give better
precision.

1 Introduction

The field of systems identification has recently become an
active area of research that has attracted the attention of
a considerable number of researchers [1–5]. The identifi-
cation consists in searching the parameters of mathemat-
ical models of a system, based on experimental data and
a priori available knowledge. The identification of linear
systems has been carried out for decades using recursive
type method. Nevertheless, today’s systems are becoming
increasingly non-linear as a result of their complexity. Ac-
cording to the progressive usage of non-linear models in
real systems, numerous resolution methods for the identifi-
cation of nonlinear systems, such as Volterra filters, neural
networks and kernel methods have been developed.

Nowadays, kernel methods are increasingly devel-
oped, they are a significant source of advances, not only
in terms of computational cost but also in terms of the
obtained efficiencies in solving complex tasks. As these
methods largely determine the efficiency of the treat-
ments, by their ability to reveal existing similarities in
the processed data. They are based on a central princi-
ple called “kernel trick”, exploited for the first time with
the Support Vector Machine (SVM)[6, 7], then also used
to transform numerous linear dimensionality reduction al-
gorithms into non-linear algorithms [8].

The kernel’s trick allows to give a non-linear charac-
ter to several originally linear methods and, without re-
striction, they can be expressed only in terms of inner
products of the observations. The several kernel adap-
∗Corresponding author: fateh.smi@gmail.com

tive filtering algorithms, including the kernel least mean
square (KLMS)[9] and kernel affine projection algorithms
(KAPA) [10], have recently been noted for nonlinear sig-
nal processing [11]. Furthermore, to optimize the quality
of the basic kernel adaptive filtering algorithms, subtypes
of these algorithms have also been mentioned [12–14] for
channel identification [15] and equalization for nonlinear
systems. In this paper, we propose an algorithm based, on
positive definite kernel function. In order to test its effi-
ciency, we have compared with the Pouliquen et al. algo-
rithm, where the goal is to identify a practical, i.e. mea-
sured, frequency-selective fading channel, called Broad-
band Radio Access Network (BRAN C), representing the
outdoor propagation. This channel of the model is nor-
malized by the European Telecommunications Standards
Institute (ETSI)[16, 17].

The present paper is arranged as follows: In the next
section, we introduced the structure of the nonlinear model
using quantized observations. In Section 3, we presented
the derivation of the Pouliquen et al. algorithm. In Section
4 we review some basic concepts of kernel methods, and
the proposed algorithm is presented in Section 5. Some
simulations to assess the performance of the proposed al-
gorithm are shown in Section 6 and, finally, Section 7 con-
cludes the paper.

2 Problem Statement

Let us consider a nonlinear model represented in Figure
1; it consists of a finite impulse response of known order,
followed by a nonlinear static function.
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Figure 1. Block of the nonlinear system with binary
outputs and noises.

The following equations are used to model the system
(Figure 1):


uk =

∑n−1
i=0 hixk−i

dk = f (uk) + bk
(1)

where, xk is the input signal, {hi}n−1
i=0 , the channel impulse

response, n is the order of FIR system, f (.) is the nonlin-
earity, and bk the measurement noise.
The measurement of the system output dk is carried out
by binary-valued sensor I[.], with a finite threshold C ∈ R,
such that:

sk = I[dk≥C] =


1 if dk ≥ C,
−1 otherwise .

(2)

The following system assumptions will be made in this
paper:

• The input xk, is independent and identically distributed
(i.i.d) with zero mean.

• The additive noise bk is gaussian and independent of xk

and dk.

• The non-linearity f (.) is continuous and invertible for
any finite x.

• There is no delay in the system, i.e. h0 � 0.

• The threshold C is known.

• ‖.‖ is the l2 norm.

3 Pouliquen et al Algorithm

A recursive identification algorithm was presented by
Pouliquen et al. [18] in 2016. The basic idea of this
algorithm is to formulate the identification problem as a
bounded error identification problem. It is based on the
following assumptions:

• C = 0.

• ‖θ‖ = 1.

• At any time k, x�k−iθ � 0, where i = 0, 1, ..., n − 1.

• The noise sequence bk is an i.i.d. sequence of random
variables with zero mean, finite covariance and uncorre-
lated with the input sequence.

The identification is realized such that:

|sk − x�k θ| < δ. (3)

with δ < 1 and θ = [h0, h1, ..., hn−1]�.
The estimation of θ is given by:

θ̂k = θ̂k−1 + Γkεk/k−1 (4)

with:
Γk =

Pk−1xkσk

λ + x�k Pk−1xkσk
. (5)

Pk =
1
λ

(In+1 − Γk x�k )Pk−1. (6)

εk/k−1 = sk − x�k θ̂k−1. (7)

where:

σk =



λ
x�k Pk−1 xk

(| εk/k−1

δ
| − 1),

if (|εk/k−1| > δ) and (x�k Pk−1xk > 0)
0, otherwise.

(8)

and 0 < λ < 1 is the forgetting factor.

4 Theoretical Framework of Kernel

Nonlinear adaptive filtering problems can be formulated
as linear finite order problems, where the original input
data X has been mapped to a nonlinear Hilbert space H
(infinite-dimensional) with a Mercer kernel [19]:

κ(xi, x j) = 〈ψ(xi), ψ(x j)〉H , ∀(xi, x j) ∈ X2 (9)

where ψ maps X into a higher dimensions space H with
an inner product 〈., .〉H .
Figure 2 shows a functional diagram illustrating an adap-
tive filter based on the kernel, where, {xk}N1 is the vector of
the N most recent input signal samples, {yk}N1 is the esti-
mated desired response and {ek}N1 is the estimation error.

xk Nonlinear system

αk

Proposed Algorithm

X → H −

+

sk

ek

ykκ(xk, .)

Figure 2. Kernel-based adaptive system identification.

At each instant k, the learning procedure is performed in
two consecutive phases:

• First of all, we get the desired output sk from the non-
linear system with binary output and noise.

• In the second phase, after the transformation of the data
to a nonlinear Hilbert space with a Mercer kernel, the
model coefficients αk are updated while minimizing the
functional cost.

Let us begin with some definitions in order to correctly
determine the existence of a functional spaceH .

Definition 4.1 (Positive Definite Kernel). A kernel is
called positive definite, if, for each input data point
{xi}Ni=1 ∈ X satisfies the following condition:

N∑
i, j=1

αiα jκ(xi, x j) ≥ 0, (10)

2
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At each instant k, the learning procedure is performed in
two consecutive phases:

• First of all, we get the desired output sk from the non-
linear system with binary output and noise.

• In the second phase, after the transformation of the data
to a nonlinear Hilbert space with a Mercer kernel, the
model coefficients αk are updated while minimizing the
functional cost.

Let us begin with some definitions in order to correctly
determine the existence of a functional spaceH .

Definition 4.1 (Positive Definite Kernel). A kernel is
called positive definite, if, for each input data point
{xi}Ni=1 ∈ X satisfies the following condition:

N∑
i, j=1

αiα jκ(xi, x j) ≥ 0, (10)

for all N ∈ N, (x1, ..., xN) ∈ XN and (α1, ..., αN) ∈ RN.

To represent the attributes ofH from their coordinates, we
can allocate an orthonormal framework to a Hilbert space
H . The associated kernel must be continuous, symmetric,
normalized and positive definite function κ : X × X → R.
The input domain, X, is a subset of RN that is compact.

Definition 4.2 (Reproducing kernels and Hilbert spaces).
Let (H , 〈., .〉H ) represent a Hilbert space constituted by
functions of X in R. The function κ(xi, x j) of X×X in R is
the reproducing kernel ofH , provided thatH admits one,
if there exists a function κ(x, .) : xi −→ κ(x, x j) belongs to
H , for any x ∈ X.

5 Proposed Algorithm

In this section, we present the proposed algorithm. The
basic idea is to run the algorithm presented in [18] in the
kernel feature space, which is connected with a positive
definite kernel κ, through the characteristic map Ψ(.) as
defined in (11). The sample sequence is transformed by
using a feature map called Ψ:

Ψ : X −→ H
xi −→ κ(xi, .), 0 ≤ i ≤ N (11)

To create the Hilbert space model of the reproducing ker-
nel (κ), we use the Gaussian kernel, which is generally a
default choice due to its universal approximation capabil-
ity:

κ(xi, x j) = exp
(
−
‖xi − x j‖2

2σ2

)
, ∀xi, x j ∈ X. (12)

where σ > 0 is the kernel width.

The proposed algorithm is composed of the four following
steps:

• Step 1: In the first step, we transform the input data
from the observation space (X) into a Hilbert space (H)
to generate the input data:

{(Ψ(x1), s1), (Ψ(x2), s2), ...(Ψ(xN), sN), ...}. (13)

• Step 2: In this second step, we apply the logic of the
Pouliquen et al. algorithm to the sequence defined in
(13) to minimize the cost function:

E[|sk − 〈(Ψ(xk)), α〉H |2]

where the term α represents the weight vector in repro-
ducing kernel Hilbert space.

• Step 3: In this third step, we operate immediately in the
reproducing kernel Hilbert space, assuming the data has
been mapped in the RKHSH using theΨ function map,
i.e,

X � x −→ Ψ(xk) := κ(x, .) ∈ H . (14)

The proposed algorithm update equations in kernel Hilbert
space results in:

α̂k = α̂k−1 + Γ
H
k ek, (15)

ΓHk =
PHk−1κ(xk, .)σk

λ + κ(xk, .)�PHk−1κ(xk, .)σk
, (16)

PHk =
1
λ

(In+1 − ΓHk κ(xk, .)�)PHk−1, (17)

and
ek = sk − κ(xk, .)�α̂k−1. (18)

where:

σk =



λ
κ(xk ,.)�PHk−1κ(xk ,.)

(| ek
δ
| − 1),

if (|ek | > δ) and (κ(xk, .)�PHk−1κ(xk, .) > 0)
0, otherwise.

(19)

6 Comparison and numerical simulation

In this section, our aim was to evaluate the performance
of the proposed algorithm. We simulated the system, in
which the linear dynamics is a BRAN channel and the out-
put nonlinearity is a hyperbolic function (tanh(2x)). The
input sequence was randomly generated with a uniform
distribution in the range [1;−1] using 50 Monte Carlo
runs.

6.1 BRAN C radio channel

The measurements for the BRAN C channel are described
in this paragraph (see Table 1). The BRAN radio channel
impulse response is described as follows:

h(n) =
p−1∑
i=0

Aiδ(n − τi), p = 18. (20)

where δ(n), τi and Ai ∈ N(0, 1) denote, the Dirac function,
the paths i time delay and path i magnitude respectively.

Table 1. Delay and magnitudes of 18 targets of BRAN C
channel.

Del. τi(ns) Mag. Ai(dB) Del. τi(ns) Mag. Ai(dB)
0 -3.3 230 -3.0

10 -3.6 280 -4.4
20 -3.9 330 -5.9
30 -4.2 400 -5.3
50 0 490 -7.9
80 -0.9 600 -9.7

110 -1.7 730 -13.2
140 -2.6 880 -16.3
180 -1.5 1050 -21.2

3
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6.2 BRAN C Channel Identification

The estimated parameters of the BRAN C radio chan-
nel impulse response, using the proposed algorithm and
Pouliquen et al. algorithm is presented in the figure
(Fig. 3), for a data length N = 1000 and for an S NR =
10dB. From this figure (Fig. 3) we remark that, when es-
timating the BRAN C channel impulse response using the
proposed algorithm, there is a slight difference between
the estimated values and the measured values, and an ap-
parent difference when using Pouliquen et al. algorithm.
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Figure 3. Estimation of the BRAN C channel impulse
response, for a data length N = 1000 and S NR = 10dB.

Figure 4 shows the estimation of the BRAN C channel
impulse response parameters as a function of targets, for
a data length N = 1000 and for an S NR = 20dB. The
impulse response is estimated with good precision using
the proposed algorithm, but represents some fluctuations
if we use Pouliquen et al. algorithm.
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Figure 4. Estimation of the BRAN C channel impulse
response, for a data length N = 1000 and S NR = 20dB.

In the figure 5, we represent the estimation of the BRAN
C radio channel impulse response, using both algorithms,
for a data legth N = 1000, and for an S NR = 30dB. From
this result, we notice that the estimated amplitude has the
same form as those of the BRAN C measured data. The
impulse response parameters are estimated with a high ac-
curacy using a proposed algorithm. For the Pouliquen, et
al. algorithm we have a difference in some paths.
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Figure 5. Estimation of the BRAN C channel impulse
response, for a data length N = 1000 and S NR = 30dB.

According to the figures 3, 4 and 5, we find that the pro-
posed algorithm has good results despite the noise envi-
ronment (i.e. S NR = 10dB) compared to the Pouliquen et
al. algorithm. In order to test the robustness of the pro-
posed algorithm in the frequency domain, we show the es-
timated magnitude and phase of the BRAN C radio chan-
nel impulse response, in the cases of N = 1000, N = 2000
and N = 3000, in Figures 6, 7 and 8, respectively, for an
S NR = 20dB, as compared to the Pouliquen et al. algo-
rithm. From Figure 6, in the case where N = 1000, we can
conclude that the estimated phase of the BRAN C channel
impulse response, via the proposed algorithm, is closer to
the true one. However, using the Pouliquen et al. algo-
rithm, there is a significantly larger difference between the
measured data and the estimated phases.
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Figure 6. Estimated BRAN C magnitude and phase, for a
data length N = 1000 and S NR = 20dB.

When N is equal to 2000, we can observe that the esti-
mated magnitude and phase of the BRAN C channel, have
the same appearance and are very close to the true val-
ues when using the proposed algorithm; whereas, when
using the Pouliquen et al. algorithm, there is a minor
difference between the estimated and the measured ones
(Fig. 7). Moreover, we note that the estimated values of
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When N is equal to 2000, we can observe that the esti-
mated magnitude and phase of the BRAN C channel, have
the same appearance and are very close to the true val-
ues when using the proposed algorithm; whereas, when
using the Pouliquen et al. algorithm, there is a minor
difference between the estimated and the measured ones
(Fig. 7). Moreover, we note that the estimated values of

the BRANC channel using the proposed algorithm and
the Pouliquen et al. algorithm are in excellent agreement
with the real model and closer to the true one, respec-
tively, when the data length is large (e.g. when we take
N = 3000) (Fig. 8). In conclusion, the input data length
(N) and the signal-to-noise ratio (S NR) have a great im-
pact on the estimated phase and a small impact on the es-
timated magnitude.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−200

−100

0

100

200

Normalized Frequency  (×π rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−40

−20

0

20

40

Normalized Frequency  (×π rad/sample)

M
ag

ni
tu

de
 (

dB
)

Measured BRAN C

Proposed Algorithm

Algo−Pouliquen

Figure 7. Estimated BRAN C magnitude and phase, for a
data length N = 2000 and S NR = 20dB.
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Figure 8. Estimated BRAN C magnitude and phase, for a
data length N = 3000 and S NR = 20dB.

7 Conclusion

In this paper, we have proposed a new algorithm based on
positive definite kernel for nonlinear system identification
from binary measurements on the output, compared with
the Pouliquen et al. algorithm. Both algorithms are used
to estimate the parameters of the BRAN C radio chan-
nel impulse response. In this work, experimental results
shows that our proposed algorithm is effective and efficient

for identifying the amplitude and phase of the frequency
selective channel impulse response (BRAN C). In future
work, we will develop new methods to identify communi-
cation channels (i.e. using no-trick kernel methods).
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