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Abstract. The prediction lifetime of a Lithium-ion battery is able to be utilized as an early warning system to 
prevent the battery’s failure that makes it very significant for assuring safety and reliability.  This paper 
represents a benchmark study that compares its RUL prediction results of single and hybrid methods with 
similar articles. We suggest a hybrid method, named the CNN-LSTM, which is a combination of Convolutional 
Neural Network (CNN) and Long Short Term Memory (LSTM), for predicting and improving the accuracy of 
the remaining useful life (RUL) of Lithium-ion battery. We selected three statistical indicators (MAE, R², and 
RMSE) to assess the results of performance prediction. Experimental validation is performed using the lithium-
ion battery dataset from the NASA and results reveal that the effectiveness of the suggested hybrid method in 
reducing the prediction error and in achieving better RUL prediction performance compared to the other 
algorithms. 

 
Index Terms. Lithium-ion batteries, machine learning, remaining useful life, long short-term memory, convolutional neural 

network. 
 
LIST OF ABBREVIATIONS 
ANN   artificial neural network 
CNN   convolutional neural network 
DNN   deep neural network 
EOL   end of life 
ESS    energy storage system 
LSTM  long short-term memory  
MAE  mean absolute error 
ML   machine learning 
NASA   national aeronautics and space administration 
R²    R-squared  
RNN   recurrent neural network 
RMSE  root mean square error  
RUL   remaining useful life  

I. Introduction 
Lithium-ion (Li-ion) batteries remain among the main 

sources of energy for EVs and electronic equipment and 
considered appropriate for the environment [1]. Thus, it 
considers a perfect choice for the energy storage system 
(ESS). In few years, they play major power sources in 
different areas e.g. consumer electronics, electric vehicles, 
aerospace electronics, and mobile communications [2]. 
Due to their best advantages:  high-density of power and 
energy, suitable for the environment, low discharge rate, 
lightweight, speedy charge, and long lifetime [3][4]. 
However, there is the gradual deterioration of the battery 
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during its lifetime, i.e. resistance increase and capacity 
decrease, for the reason that the external environment (e.g. 
discharge rates, temperatures), electrochemical reactions, 
and physical/chemical changes of the battery. 

In spite of their advantages, degradation of battery 
performance over time can cause some losses such as 
catastrophic results of the devices, battery explosion of 
phones and EVs, rising maintenance costs, losses 
economic [5]. For avoiding these disasters, it requires more 
effort in lifespan prediction of Li-ion batteries that are very 
necessary for improving the reliability and safety of the 
overall energy system however its future behavior 
prediction is a difficult task.  

The battery management system (BMS) is necessary for 
ensuring the safety of Li-ion batteries, which is generally 
based on three essential elements: remaining useful life 
(RUL), state of charge (SOC), and state of health (SOH) 
which have a relationship respectively to the charge of the 
batteries and their aging [6]. The RUL is defined as the 
remaining number of cycles (charge/discharge) to get to 
the failure threshold, i.e. 70 % of the nominal capacity, of 
the battery with a specific output capacity. Thus, for the 
RUL prediction of Li-ion battery, it can use four methods: 
direct measurement, model-based, data-driven, and hybrid 
methods [7].  
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The first method is the direct measurement, which uses 
to calculate the capacity and impedance of battery cells 
using the open-circuit voltage and Electrochemical 
Impedance Spectroscopy, respectively. The second method 
is model-based that uses different models such as 
equivalent circuit, electrochemical, or empirical models 
(Kalman filter, unscented Kalman filter, particle filter, 
etc.).  The third method is data-driven prediction methods 
like artificial neural networks (ANN), support vector 
machines (SVM), and relevance vector machine (RVM), 
etc. [8], the advantage of this method is using the historical 
data that help for avoiding the necessity of complex 
physical or mathematical models for battery capacity 
degradation [9]. While the fourth method is the hybrid 
methods which combine the previous methods with each 
other [3] [10]. 

Several researchers have depended on hybrid neural 
network methods to predict the RUL of Li-ion batteries.  
Their performance results showed a high prediction 
accuracy compared to single methods. Wu et al. presented 
a method composed of the feedforward neural network 
(FFNN) and importance sampling (IS). Young et al. 
applied ELM in two approaches, which combine with 
MPSO, i.e. MPSO-ELM [9], and combine with HKA, i.e. 
HKA-ELM [10], for improving the stochastic parameters 
of the ELM to achieve a good prediction accuracy. While 
Chen et al. [11] presented a method called ELM–
BSASVM, which fuse ELM with a backtracking spiral 
algorithm (BSA) and support vector machines (SVM). Ren 
et al. [12] present a combined Autoencoder with Deep 
Neural Network (ADNN).  Cadini et al. [13] presented a 
hybrid method that combines multi-layer perceptron and 
particle filter (MLP-PF). Fan et al. [3] proposed a mixed-
method named HA-FOSELM, which combines the 
Forgetting Online Sequential (FOS), Extreme Learning 
Machine (ELM), and the Hybrid Grey Wolf Optimizer 
(HGWO) algorithm.  Wang et al. [14] used a method of the 
ensemble empirical mode decomposition EEMD with 
nonlinear autoregressive neural networks NARNN to 
predict RUL battery. Zhang et al. [15] propose a method 
fusing the partial incremental capacity and ANN. Cui et al. 
[16] present a hybrid method that combines unscented 
Kalman filter UKF, LSTM, and NN model.  Yang et al. 
[17] proposed a mixed-method named CNN-BiLSTM, 
which combines CNN and bidirectional Long Short Term 
Memory (BiLSTM).  Jia et al.[18] used a Wavelet neural 
network (WNN) with an unscented particle filter (UPF) to 
predict the RUL battery. Li et al. [20] and Ma et al. propose 
a hybrid neural network method, the first combines the 
Elman with LSTM [19], and the second combines CNN 
with LSTM [4]. 

The main contributions of this paper are to build a 
forecast model for RUL prediction of Li-ion batteries 
based on a hybridization technique by combining CNN, 

LSTM. To the best authors’ knowledge, this is the first 
attempt to predict RUL Li-ion battery using CNN-LSTM 
based on univariate time series. Additionally, this work is 
to provide deeper insights on the single and hybrid methods 
for predicting the RUL of Li-ion battery by the comparison 
between methods of our work i.e., LSTM, CNN-LSTM, 
and methods in other papers. The proposed method 
obtained excellent results and achieved high predictive 
accuracy for the RUL estimation. Thus, it can help that to 
improve the lifetime control strategies and safety 
monitoring function of the battery for avoiding 
catastrophes. 

The other sections of this paper are prepared as follows: 
Section II presents the architecture of CNN-LSTM. 
Section III introduces the RUL estimation techniques using 
the different methods. Section IV shows the experiment 
results and comparative study. Finally, a conclusion is 
given. 

II. Time series prediction using hybrid 
neural networks method   

2.1 Related work  of  CNN-LSTM method 

Deep learning methods have already been used in many 
papers, which have known success in many areas 
especially in time-series prediction, where they gave a 
good performance due to their good advantages e.g. self-
adaptive, and capability dependence of nonlinear.  
Recently, the CNN-LSTM hybrid method has used in 
many studies because has realized good results when it 
applied in various fields. Among the fields that contributed 
is the medicine domain, ( e.g. forecast of haemorrhage into 
the cranium [20]), the plant domain, (e.g. estimating the 
characteristics of the plant [21] and recognizing the 
different headlines of Clickbait and classify it [22]), the 
pollution of air domain, (e.g. achieving a good prediction 
accuracy of air quality [23]), the financial domain, (e.g. 
estimating the volatility of gold [24]), the traffic domain, 
(e.g. avoiding the overcrowding of traffic [25]), the energy 
domain, (e.g. predicting the structure of energy at the 
following years [26], estimating the RUL and SOC of the 
batteries [27]), and more application domains. Depending 
on the good results shown by the CNN-LSTM hybrid 
method in previous works mentioned above. We propose 
to use it in our work to predict the RUL of Li-ion batteries 
for improving the performance of prediction accuracy of 
the same task. 

2.2 The CNN-LSTM method 
Every one of the CNN and LSTM has many advantages, 

thus, the combination of these networks in unite framework 
able to obtain good results of the RUL prediction of Li-ion 
batteries. 

CNN is capable to capture the spatial relationship, 
extract local features and reduce the amount of the weights 
using the shared weights structure, and additional 
advantages such as the local dependency and scale 
invariance. Its structure includes the convolutional layer, 
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which extracts different features of input through the 
convolution process, which contains several feature planes 
and neurons. The pooling layer extracts the secondary 
features, where it reduces the feature resolution and its 
surface dimension to obtain constant spatial features. The 
fully connected layers, and output layers. Both previous 
layers are congruous with each other since the pooling 
layer inputs are the outputs of the convolution layer. The 
fully connected layers are able to fuse the information from 
the previous layers. The final layer is the output layer that 
receives outputs of fully connected.  The CNN is 
implemented using a kernel "K" or filter for obtaining a 
feature map S from the input vector A. The formula is: 

 
 𝑆𝑆(i, j) = ∑ ∑ 𝐴𝐴(𝑖𝑖 − 𝑚𝑚, 𝑖𝑖 − 𝑛𝑛). 𝐾𝐾(𝑚𝑚, 𝑛𝑛)𝑛𝑛𝑚𝑚           (1)    

 

Fig.1. The architecture of the CNN  
 

Recurrent Neural Networks (RNNs) are a category of 
ANN where they have an advantage different from DNNs 
that is the internal memory, which leads to allowing 
information to continue and to remember past information. 
It profits the temporal correlations between neurons and is 
utilized to treat the tasks that include the sequence of the 
features. Thus discovering the best way to make the next 
estimation reasonable. Nevertheless, it has a problem with 
the long-distance dependencies that lead to disappear 
gradients and vanishing. To avoid these problems, LSTM 
is used to control the propagation of gradients information 
and remembering the parameters as input during the long 
term and it also has the addition operation that leads to 
solving the problem of disappearing gradient. The LSTM 
architecture is containing three gates i.e. the input (i), 
forget (f), and output (o), as well as a memory unit. 

The LSTM is the cell of the LSTM consists of a long-
term state of Ct and a short-term state ht.  The calculation 
of the hidden layer nodes depends on the input of the 
current layer and the activation values of nodes at the 
previous moment.  LSTM's equations can be defined as 
follows: 

 
𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊 𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) 

it = 𝜎𝜎(𝑊𝑊 𝑖𝑖[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)         (2) 
𝑞𝑞𝑡𝑡 = tanh(𝑊𝑊 𝑞𝑞[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑞𝑞) 

𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊 𝑜𝑜[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜 
𝑐𝑐𝑡𝑡 = 𝑓𝑓 𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ∗ 𝑞𝑞𝑡𝑡 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh( 𝑐𝑐𝑡𝑡) 
  

W is the weight matrices, b is the bias, 𝜎𝜎 is the sigmoid 
function, xt is the unit input at time t, ht-1 is the unit output 
of the previous LSTM cell, ct  and ct-1 are the cell states at 
time t and t-1, respectively, qt is the hyperbolic function. 

 

 
Fig.2. The architecture of each the RNN and LSTM. 
 

The combination CNN-LSTM algorithm profit the 
advantages of CNN and LSTM. It able to extract two types 
of features are the spatial and temporal. The first is the 
interrelations within current inputs, while the second is the 
correlations between current RUL and past inputs. Thus, 
the proposed method is designed to take advantage of all 
of them; this architecture of the proposed method shown in 
fig.3 is designed to profit from all previous advantages 
mentioned above. 

 
Fig.3. The framework of the proposed method. 

III.  RUL PREDICTION 
In this section, we will present the results of ours 

experimentations to predict RUL with three algorithms: 
RNN, LSTM, and CNN-LSTM. The experimental data of 
the NASA Prognostics Center of Excellence [31] is used in 
this paper for validation. It consists of aging data for 18650 
Li-ion batteries of 2Ah rated capacity. Table.1 introduce 
the information about this battery as follow: 

 
Table 1. The description of NASA Li-ion battery 

battery B0006 

Type 18650 NMC 

Constant charge current 1.5A 

Minimal charge current 20mA 
Discharge current 2A 

nominal capacity 2Ah 
Charge/Discharge cut-off voltage 4.2/2.5V 

charge/discharge cycles 168  

 
Table 2. Hardware and software environment 

Hardware and Software 
Environment 

Version or Model Number 

Operating System Windows 10 professional edition 

 Development Environment Python with Tensorflow 

CPU  i7-8565U 
RAM 8G  

Processor 1.80GHz CPU 

GPU   Intel(R) HD Graphics Family 
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The B0006 battery dataset, shown in Figure 4, contains 
168 cycles, 80 of them are utilized for training and the rest 
for validation. The hardware and software environment 
shown in Table 2 was used to implement the three methods, 
i.e. RNN, LSTM, and CNN-LSTM, The rectified linear 
unit (ReLU) activation function is used along with Adam 
optimizer. Huber loss is also employed. Besides, to 
evaluate the RUL prediction performance of the 
algorithms, we use the mean absolute error (MAE) [28], 
root mean square error (RMSE) and R square (R²) [29]. 
They are defined in equations 3, 4 and 5. 

 
     𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝐾𝐾 ∑ |𝑦𝑦𝑘𝑘 − 𝑦𝑦�̂�𝑘|𝑘𝑘
𝑘𝑘=1                       (3) 

    𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = √1
𝑁𝑁 ∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�̂�𝑘)²𝑁𝑁

𝑖𝑖=1              (4) 

  𝑅𝑅² = 1 −    ∑ (𝑦𝑦𝑘𝑘−𝑦𝑦�̂�𝑘)2𝑛𝑛
𝐾𝐾=1

∑ (𝑦𝑦𝑘𝑘−𝑦𝑦𝑘𝑘̅̅ ̅̂̅ )2𝑛𝑛
𝐾𝐾=1

                            (5)

 
Where 𝑦𝑦𝑘𝑘  is the true value battery capacity, while 𝑦𝑦�̂�𝑘  is 

the estimated value one, 𝑦𝑦𝑘𝑘̅̅ ̅ represents the average of actual 
one. When the MAE and RMSE it is close to zero, the 
capacity prediction accuracy is higher. As for R², a value 
close to one yields better accurate RUL prediction results

 
 Fig. 4.   Capacity degradation curve of battery B0006 
 

 Each algorithm consists of four steps: data pre-
processing, algorithm training (80 cycles), validation 
estimation (88 cycles) and 40 new predictions cycles (from 
169 to 208). 

Below, the RUL prediction results are presented for two 
algorithms the real value is represented in blue color, 
forecast validation in green color that is starting in the 80 
cycle, and new forecast results of these algorithms in red 
color. 

3.1 RUL estimation with the RNN method 

First algorithm is RNN, which is used to predict the RUL 
of Li-ion battery. Fig. 5 reveals RUL estimation 

performance for the B0006 Li-ion battery. It can be 
observed that the curve of validation is near the curve of 
true value, which makes this algorithm good learned. 
Nevertheless, it has also a bad new prediction. The MAE 
decreases gradually with the number of epochs. The MAE 
and RMSE values of RUL estimation are equal to 0.01594 
and 0.02903; In addition, the R² value is equal to 0.917. 

 

 
          Fig. 5.   (a) RUL prediction results using RNN 
 

 
 
 
 

 
        Fig. 5.  (b) RUL training performance using RNN 

3.2 RUL estimation with the LSTM method 

A second algorithm, namely LSTM, is used for the same 
task. Fig. 6 reveals RUL estimation performance. A better 
accuracy is obtained in the validation phase. The MAE 

4

E3S Web of Conferences 297, 01043 (2021) https://doi.org/10.1051/e3sconf/202129701043
ICCSRE’2021



 4 

The B0006 battery dataset, shown in Figure 4, contains 
168 cycles, 80 of them are utilized for training and the rest 
for validation. The hardware and software environment 
shown in Table 2 was used to implement the three methods, 
i.e. RNN, LSTM, and CNN-LSTM, The rectified linear 
unit (ReLU) activation function is used along with Adam 
optimizer. Huber loss is also employed. Besides, to 
evaluate the RUL prediction performance of the 
algorithms, we use the mean absolute error (MAE) [28], 
root mean square error (RMSE) and R square (R²) [29]. 
They are defined in equations 3, 4 and 5. 

 
     𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝐾𝐾 ∑ |𝑦𝑦𝑘𝑘 − 𝑦𝑦�̂�𝑘|𝑘𝑘
𝑘𝑘=1                       (3) 

    𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = √1
𝑁𝑁 ∑ (𝑦𝑦𝑘𝑘 − 𝑦𝑦�̂�𝑘)²𝑁𝑁

𝑖𝑖=1              (4) 

  𝑅𝑅² = 1 −    ∑ (𝑦𝑦𝑘𝑘−𝑦𝑦�̂�𝑘)2𝑛𝑛
𝐾𝐾=1

∑ (𝑦𝑦𝑘𝑘−𝑦𝑦𝑘𝑘̅̅ ̅̂̅ )2𝑛𝑛
𝐾𝐾=1

                            (5)

 
Where 𝑦𝑦𝑘𝑘  is the true value battery capacity, while 𝑦𝑦�̂�𝑘  is 

the estimated value one, 𝑦𝑦𝑘𝑘̅̅ ̅ represents the average of actual 
one. When the MAE and RMSE it is close to zero, the 
capacity prediction accuracy is higher. As for R², a value 
close to one yields better accurate RUL prediction results

 
 Fig. 4.   Capacity degradation curve of battery B0006 
 

 Each algorithm consists of four steps: data pre-
processing, algorithm training (80 cycles), validation 
estimation (88 cycles) and 40 new predictions cycles (from 
169 to 208). 

Below, the RUL prediction results are presented for two 
algorithms the real value is represented in blue color, 
forecast validation in green color that is starting in the 80 
cycle, and new forecast results of these algorithms in red 
color. 

3.1 RUL estimation with the RNN method 

First algorithm is RNN, which is used to predict the RUL 
of Li-ion battery. Fig. 5 reveals RUL estimation 

performance for the B0006 Li-ion battery. It can be 
observed that the curve of validation is near the curve of 
true value, which makes this algorithm good learned. 
Nevertheless, it has also a bad new prediction. The MAE 
decreases gradually with the number of epochs. The MAE 
and RMSE values of RUL estimation are equal to 0.01594 
and 0.02903; In addition, the R² value is equal to 0.917. 

 

 
          Fig. 5.   (a) RUL prediction results using RNN 
 

 
 
 
 

 
        Fig. 5.  (b) RUL training performance using RNN 

3.2 RUL estimation with the LSTM method 

A second algorithm, namely LSTM, is used for the same 
task. Fig. 6 reveals RUL estimation performance. A better 
accuracy is obtained in the validation phase. The MAE 
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decreases gradually with the number of epochs. The MAE 
and RMSE values of RUL estimation are equal 0.01299 
and 0.02240, respectively, which is lower than those 
obtained with the RNN. While, the R² value is 0.950 that is 
high with respect to the RNN.  However, it overcome to 
RNN, the prediction performance of new forecasts is still 
not satisfactory. 

 
       Fig. 6.   (a) RUL prediction results using LSTM 

     

 
 

 
      Fig. 6.  (b) RUL training performance using LSTM 
 

Next, hybrid algorithm combining the CNN, and LSTM, 
which are proposed to improve further the estimation 
performance and more importantly to achieve acceptable 
prediction for new forecasts. 

3.3 RUL estimation with the CNN-LSTM 
method 

The CNN-LSTM hybrid algorithm is introduced as a 
combination between CNN and LSTM for the RUL 
prediction of Li-ion battery. 

 
       Fig. 7.   (a) RUL prediction results using CNN-LSTM 
   

 
 

 
 
 
  
 

 
        Fig.7. (b) RUL training performance using CNN-LSTM. 
 

It is clear from Fig. 7 that there is better consistency 
between the estimates and the true values. Moreover, a 
good performance is finally obtained for the prediction of 
new forecasts. In addition, the MAE curve does converge 
to the loss curve that remains close to zero in spite the high 
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0.0090, 0.957 and 0.02092, respectively, which are the 
lowest values obtained compared to previous methods. 

This experiment demonstrates clearly the superiority of 
hybrid method over single methods in achieving high 
estimation accuracy and more importantly in predicting 
new forecasts. Thus, CNN-LSTM achieve the highest 
accuracy in the RUL prediction of the Li-ion battery. Next 
section summarizes the numeric RUL prediction errors and 
put them in perspective with other the best performant 
methods in literature.  

IV. Comparative Results Analysis 

4.1 RUL validation and the evaluation 
criteria 

The above experiments reveal that hybrid method has 
successfully learned the dynamic nature of Li-ion batteries. 
Table 3 summarizes the three indicators used to evaluate 
prediction performance, which are the MAE, the R² and the 
RMSE. 

Table 3. RUL estimation results for B0006 
Methods  MAE R² RMSE 

RNN 0.01594 0.917 0.02903 

LSTM 0.01299 0.950 0.02240 

CNN-LSTM 0.00902 0.957 0.02092 

 
Table 3 shows the performance of the proposed 

algorithms with the same starting point for testing sets for 
battery B0006, where the MAE and RMSE values with 
hybrid method are lower than that with single ones and the 
R² values with hybrid method are higher than that of single 
ones. This confirms that proposed hybrid method improve 
substantially the RUL estimation. In addition, the 
improvement from CNN-LSTM to LSTM is 30.5 % of 
MAE and 6.6 % of RMSE.  

4.2 Results analysis and comparison 

  This section presents a comparative analysis of the RUL 
estimation accuracy between various comparable methods 
in literature among the single and hybrid methods. The 
single seem to be not adequate for time series data 
compared to the hybrid. This is revealed by the findings 
summarized in Table 3 and in the comparative analysis 
presented in this section. 
In order to compare more generally with other types of 
neural networks of prediction methods, we extract some 
results of performance methods from other papers, where 
their methods have the same dataset, i.e. NASA, and the 
same indicators of performance. 
 
 

 
Table 4. RUL estimation results of B0006 for some papers 

Methods  MAE R² RMSE 
RNN 
LSTM 
CNN-LSTM 

0.01594 
0.01299 
0.00902 

0.917 
0.950 
0.957 

0.02903 
0.02240 
0.02092 

SC-CNN 
SC-LSTM  [30] 

0.0623 
0.0210 

 0.0701 
0.0288 

RNN 
LSTM 
HA-FOSELM  [3] 

  0.1131 
0.0784 
0.0434 

ELM 
PSO-ELM 
MPSO-ELM [9] 

 
 

0.8829 
0.8945 
0.9514 

 

UKF 
AUKF 
AUKF-GASVR [29] 

0.0994  
0.0371  
0.0368 

 0.1275  
0.0489  
0.0483 

 
Table 4 reveals that the accuracy of all hybrid methods 

exceeds the one obtained with their single counterparts. 
This shows the power of hybridization in achieving better 
results and confirms the findings presented in this 
manuscript. In fact, hybridization is observed to decrease 
MAE, RMSE, and R². 

According to the above analysis, we can deduce that the 
proposed CNN-LSTM RUL prediction approach is an 
excellent estimator with its high accuracy. 

V. Conclusion 

 In this paper, a hybrid CNN-LSTM algorithm is 
suggested by combining two well-known algorithms, i.e., 
Convolutional Neural Networks (CNNs) and Long Short 
Term Memory (LSTM) to predict the remaining useful life 
(RUL) and improve the prediction of the Li-ion batteries. 
The proposed method is experimentally validated on a 
dataset obtained from NASA. Experimental results 
demonstrate the high RUL prediction capability of the Li-
ion battery. Moreover, the prognostic of the proposed 
hybrid method is more accurate than single ones. 
Generally, three prediction performance indices reveal the 
highest accuracy of CNN-LSTM compared to RNN, 
LSTM, and other existing methods. 
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