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Abstract. The article deals with forced vibrations of a high-rise 
axisymmetric structure, represented as a viscoelastic beam of an annular 
section with a variable slope of the generatrices and variable thickness. The 
research was conducted to analyze the behavior of a high-rise structure for 
various kinematic effects. The task is to determine the displacements of the 
points of a high-rise structure at different time points under different 
kinematic effects. The methods were developed and a computer program 
was built; forced vibrations of high-rise axisymmetric structures under 
various kinematic actions, considering viscoelastic properties of the 
material, were investigated in linear, nonlinear, and viscoelastic 
formulations. The study of the dynamic behavior of a high-rise structure, 
taking into account the nonlinear and dissipative properties (different in 
nature) of the material, shows that the combined consideration of all these 
properties brings the resulting pattern closer to the one observed in reality. 
That is, the amplitude of the structure's oscillations does not grow 
infinitely, but gradually decreases over time, and the maximum possible 
consideration of nonlinear and dissipative properties leads to the fastest 
damping of oscillations. 

1 Introduction 
 
The problems of calculating viscoelastic structures are an integral part of the mechanics of 
a deformable rigid body, along with the problems of the theory of elasticity and plasticity. 
The variety of physical processes of deformation of real natural and artificial materials of 
structures (polymer composite materials, plastics, rocks, etc.) dictates the need to search for 
effective mathematical methods to calculate and construct the governing equations of 
viscoelastic bodies. 
V. Volterra and L. Boltzmann conducted fundamental studies on hereditary elasticity. The 
mathematical theory of viscoelastic bodies was intensively developed in the 60s. Here, first, 
                                                 
*Corresponding author: scherzodshox77@mail.ru 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 304, 02004 (2021)	 https://doi.org/10.1051/e3sconf/202130402004
ICECAE 2021



fundamental works of Russian scientists A.A. Ilyushin, B.E. Pobedrya, N.Kh. Arutyunyan, 
P. M. Ogibalov, V. V. Moskvitin, M. A. Koltunov, Yu. N. Rabotnov should be mentioned, 
as well as basic researches performed by I. I. Bugakov, V. G. Gromov, V. V. 
Kolokolchikov, A. S. Kravchuk, V. P. Maiboroda, L. E. Maltsev, V. P. Matveenko, M. I. 
Rozovsky, N.A. Trufanov, I.E. Troyanovsky [1-8]. 
Foreign researchers: T. Alfrey, D. Bland, R. Christensen, B. Coleman, T. Ferry, D. 
Fitzgerald, A. Green, B. Gross, M. Gurtin, R. Rivlin, A. Reddy, R. Sheperi and others also 
studied the fundamental problems of viscoelasticity [9-10]. 
The main methods for solving boundary value problems of equations of linear 
viscoelasticity are as follows: operator method, the method of integral transformations (of 
Laplace or Laplace-Carson), A. A. Ilyushin's approximation method, the method of direct 
integration of the quasi-static equilibrium equations of of equations of linear viscoelasticity 
of the body in time, the method of V. I. Maloy-N.А. Trufanov quasi-constant operators and 
others. The operator method is based on the commutative property of the operations of 
integration in time and differentiation in spatial coordinates. The main problem is that after 
replacing the constants in the elastic solution with the material operators of the of equations 
of linear viscoelasticity, it is necessary to decipher the resulting operator functions. It 
should be noted that the decoding methods used essentially depend on the type of material 
functions of memory. The applicability of the operator method requires the time 
invariability condition of the type of boundary conditions on the surface of the body.  
In practical problems, a situation often occurs when an elastic solution is an irrational 
function of elastic constants. Methods for decoding irrational functions are proposed in the 
studies by Yu.N. Rabotnov, M.I. Rozovsky, Ya.V. Bykov. A number of approaches are 
known, based on the concept of representing an elastic solution in a form convenient for 
subsequent decoding using the Volterra method. In the studies by V.P. Matveenko, 
E.S.Ekelchik, the expansion of an elastic solution in a Taylor series by Poisson's ratio is 
used. The main difficulty that arises when using this approach is the need for numerical 
differentiation of the elastic solution. 
Despite the variety of approaches used to solve problems of equations of linear 
viscoelasticity within the framework of the operator method, by now, it is impossible to 
assert that there exists a universal, accurate, economical and efficient algorithm. In 
particular, until recently there were relatively few publications with examples of the 
calculation of structures with volumetric creep and relaxation. Only in recent years, thanks 
to the researches of V.P. Matveenko, N.A. Trufanov, G.S. Tsaplina, the problem of 
accounting for the volume viscoelastic properties has become solvable. Based on these 
works, new patterns of changes in the stress-strain state of structures in time were revealed, 
in particular, the possibility of its non-monotonic change in time under monotonic external 
loads. Thus, in the publications of V.P. Matveenko, a method was developed for 
representing the elastic solution in the form of a series in powers of the A.A.Ilyushin 
parameter. The method is applicable both for homogeneous body problems and for 
piecewise homogeneous bodies. The method of quasi-constant operators was developed by 
V. I. Maloy and N. A. Trufanov. It can be considered as one of the most efficient operator 
methods. N.A. Trufanov subsequently generalized this method to problems of equations of 
linear viscoelasticity for an aging, anisotropic, and inhomogeneous body. 
The method of integral transforms is based on the fact that the formulation of the problem 
of equations of linear viscoelasticity in images coincides with the formulation of the 
corresponding problem of the theory of elasticity; hence the coincidence of the solution in 
the images and the elastic solution. In the general case, the task of transitioning from 
images to originals is difficult. Methods based on integral transforms (Laplace or Laplace-
Carson) are described in detail in various articles and monographs. The use of integral 
transforms is sensitive to the form in which the creep and relaxation kernels are specified; 
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in particular, this method is inapplicable for problems with kernels of non-resolvent type, 
problems with time-variable boundary surfaces, problems that do not obey the principle of 
temperature-time analogy. The inverse transform is easily achieved if the elastic solution is 
represented as the product of the fractional-rational function of Poisson's ratio by the 
coordinate function. However, in the case when there is no rational dependence of the 
elastic solution on Poisson's ratio, one has to resort to the approximate inversion of the 
Laplace transform. 
The approximation method was developed by A. A. Ilyushin [7-8] in order to simplify the 
procedure for the transition from images to originals for problems of equations of linear 
viscoelasticity of an ageless body with a non-relaxing volume. In subsequent works, the 
original version of the approximation method was generalized to the cases of more complex 
problems. An attempt to extend the approximation method to nonlinear viscoelastic media 
was made in the works of V.V. Kolokolchikov. The advantages of the approximation 
method are the possibility of using it in numerical solutions obtained using the FEM. 
Our own analysis of the most common methods for solving problems allows us to draw the 
following conclusions. First, there is a limited versatility of use in the considered methods. 
So the method of integral transforms is focused on application to resolvent difference 
operators, the operator method is also in a certain dependence on the form of material 
functions and the method of setting boundary conditions in time. Secondly, from the point 
of view of practical implementation, algorithms for solving viscoelastic problems should be 
oriented towards adaptation to the methods of finite element and finite differences, widely 
used in the problems of applied analysis of strength and durability of structures, and have a 
variational basis. In this regard, the following formulation of the problem of constructing an 
algorithm may arise: to proceed not from various methods of representing an elastic 
solution, but from a formulation convenient for realizing a viscoelastic solution using some 
numerical method. In other words, since to obtain an elastic solution, from which it is quite 
easy to pass to a viscoelastic solution, is only an intermediate goal (the final goal is to 
obtain a solution to the original problem of linear viscoelastic equations), then there are 
ways to achieve the final goal, bypassing the stage of constructing a sufficiently "good" 
elastic solution and using, at the same time, the advantages of the accumulated experience 
in solving continual scleronomic problems of elasticity, provided by the FEM and FDM in 
the form of software packages and integrated systems. 
In [11–15], a method is presented for determining the dynamic characteristics of a 
viscoelastic beam in the framework of the one-dimensional theory of viscoelasticity. The 
hereditary Boltzmann-Voltaire theory was used to describe dissipative processes in the 
building material. The natural vibrations of a viscoelastic beam are investigated and the 
results obtained are compared with the results of field experiments. 
In [16–18], forced vibration analysis of isotropic thin circular plate resting on nonlinear 
viscoelastic foundation is investigated. The system coupled nonlinear partial differential 
equations are transformed to system of nonlinear ordinary differential equation using 
Galerkin decomposition method. The developed solutions are verified using the existing 
results in the literature, and good agreement is observed. Subsequently, the analytical 
solutions are used to investigate the effects of various parameters on the dynamic response 
of the plate. From the results, it is observed that nonlinear frequency ratio of vibrating 
circular plate increases with increased linear elastic foundation and tensile force.  
In [19–22], vibrations of high buildings caused by wind and tornado waves were studied to 
assess the aeroelastic effects of high buildings using the wind tunnel tests. The aerodynamic 
damping coefficient and aerodynamic stiffness were determined by analyzing the 
aeroelastic force acting on the oscillating model. For a 347-meter-high building, the effect 
of aeroelastic parameters on wind-induced responses and equivalent static wind loads was 
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analyzed. The results showed that during a return period of 100 years, aerodynamic 
damping was positive and aerodynamic stiffness was negative. 
In [23–27], a statement and a method for solving the problem of axisymmetric vibrations of 
a physically nonlinear viscoelastic cylindrical shell with lumped masses are presented. The 
function characterizing the deviation of the stress intensity curve from the Hooke's straight 
line is taken in the form of cubic nonlinearity. A mathematical model, a solution method 
and a computational algorithm for the problem of axisymmetric vibrations of a cylindrical 
shell with a concentrated mass, taking into account the physically nonlinear deformation of 
the material under various boundary conditions, are developed within the framework of the 
Kirchhoff-Love hypothesis. To solve the resulting system with the Koltunov-Rzhanitsyn 
weakly singular kernel, a numerical method was applied based on the use of quadrature 
formulas.  
An important stage in the study of the dynamic behavior of the structure under 
consideration is the determination of the dynamic characteristics of the structure, which 
include eigenfrequencies and vibration modes, amplitude-phase frequency response, 
dynamic influence coefficients (dynamic rigidity and dynamic yielding), etc. This is initial 
information for the subsequent analysis of structural vibrations. 
It is known that high-rise buildings are complex system composed of relatively simple 
structures, mechanically interconnected and interacting in the process of coupled vibrations. 
This significantly complicates the task of studying its dynamic characteristics by 
experimental and computational methods. At that, the difficulties that arise can be of both 
technical and organizational nature. So, for example, a structure may be too large for 
vibration testing, therefore, the only possibility to calculate complex high-rise structures is 
to build numerical algorithms and to numerically simulate strain processes. 
Thus, the problem of adaptation to the equations of linear viscoelasticity, nonlinear 
viscoelasticity of the existing apparatus for solving continuous elastic problems contained 
in the FEM and FDM packages is quite urgent and incomplete, despite a sufficient number 
of publications on this issue. From this point of view, this work can be interpreted as one of 
the attempts to implement this concept.  

 
2 Methods 
 

Unsteady-state forced vibrations of a high axisymmetric structure are considered; the 
structure is represented by a one-dimensional model - a viscoelastic beam of annular cross 
section with a variable slope of the generatrix and a variable thickness. Let us consider an 
element of the structure shown in Fig. 1 as a design scheme. 

 
Fig. 1. Design scheme of the structure 
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The lower end of the beam (z = 0) is rigidly fixed and the kinematic effect w0 (t) is set on it; 
the upper end (z = L) is free. The beam material is a nonlinearly viscoelastic one. Bending 
unsteady-state forced vibrations of points located at different levels of a structure under set 
kinematic effect are to be determined. 
The mathematical statement of the problem includes the variational equation of the 
principle of virtual displacements, according to which the sum of work of all active forces, 
including inertia forces, on a virtual displacement w, satisfying geometrical boundary 
conditions is zero 
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Here Ам , Аи , АР – are the virtual work of the bending moment, inertial forces and 
external forces, respectively, calculated by the formulas: 
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where  - is the beam material density, L – the beam length, w(z) - the beam deflection, 
M(z) -  the bending moment; F(z) - the cross-sectional area; P(z, t) – the external dynamic 
forces. 
Variational problem (1) with dependencies (2) is solved under the following boundary and 
initial conditions: 
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where w0(t) - is the known time function, 0u , 0u  are the given constants. 
The physical relationship between stresses and strains is taken on the basis of the nonlinear 
theory of viscoelasticity [8] 
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where Е - is the instantaneous modulus of elasticity of the material; R1, R2 are the 
relaxation kernels; =const0 is the non-linearity coefficient, depending on the material of 
the beam. 
In particular, the geometric and physical relations can be taken in the following form 
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The problem of unsteady-state nonlinear forced vibrations of a beam consists in the 
following: for a given function w0(t) under initial conditions 0u , 0u  - to find the deflection 
w(z, t), strain z(z, t),  ), stress z(z, t) and bending moment Мz(z, t), satisfying equations 
(1), (2), (4) - (5) and conditions (3), (4) for any possible w. 
To reduce the above-stated variational problem to a system of resolving equations, the 
finite element method was used, where a one-dimensional element in the form of a 
truncated cone working in bending with four degrees of freedom was chosen as a finite 
element (Fig. 2). 
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Fig. 2. Used finite element  

  
To reduce the variational problem posed above to a system of resolving equations, the finite 
element method is used [28], where a one-dimensional element is selected as the finite 
element, taken in the form of a truncated cone that works on bending with four degrees of 
freedom [32]. 
For the displacement function w inside the e-th element, the cubic approximation is used: 
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Hereinafter, the following notation is used: {} - vector, [] - matrix, T - transposition 
operation. 
The transformation inverse to (8), i.e. the matrix dependence of {i} on {wi} is expressed 
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Using the indicated transformations (11), we express the displacement function (8) and its 
derivatives in a matrix form in terms of nodal displacements {wi} 
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Substituting expression (3-5) in (2), we obtain the virtual work of the bending moment for 
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Substitution of (13) into (14) and integration over the cross-sectional area leads each term 
of expression (14) to the following form: 
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the third term
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Expanding the expression under the integral sign in (17): 
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we see that it is a vector whose coordinates are cubic polynomials from nodal 
displacements. 
As a result of integration over the length of the element, the third term (17) is 
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where the index “e” indicates that the vector {Vе} is defined for the e-th element. 
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Considering (20), we get 

   e
t

T
i

F

l
VdtREwdzdF

z
w

z
wtRxE 





 )()(

0
2

0
2

23

2

2

2
5 




















              (21) 

The use of the finite element method procedure leads the variational problem (1) and (3) to 
a nonlinear system of integro-differential equations, which has the following matrix form: 
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Here [M], [K] are the matrices of mass and rigidity of the entire structure; {w} is the 
displacement vector of all the nodal points of the structure; {V} is a vector whose 
coordinates are determined by cubic polynomials of system displacements, {P} is a vector 
of external influences. 
This equation is solved by the Newmark method [29-30]. Equation (22) at given initial 
conditions (4) is solved by direct integration using a numerical step-by-step procedure. We 
used the Newmark method to solve the system of equations (22), based on independent 
expansions of w(ti+) and its derivative into the series in powers , while holding the terms 
containing the third derivative wi. The coefficients for the residual terms  and  are 
selected from the condition for ensuring the unconditional convergence of the integration 
process: 
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Here [M], [K] are the matrices of mass and rigidity of the entire structure; {w} is the 
displacement vector of all the nodal points of the structure; {V} is a vector whose 
coordinates are determined by cubic polynomials of system displacements, {P} is a vector 
of external influences. 
This equation is solved by the Newmark method [29-30]. Equation (22) at given initial 
conditions (4) is solved by direct integration using a numerical step-by-step procedure. We 
used the Newmark method to solve the system of equations (22), based on independent 
expansions of w(ti+) and its derivative into the series in powers , while holding the terms 
containing the third derivative wi. The coefficients for the residual terms  and  are 
selected from the condition for ensuring the unconditional convergence of the integration 
process: 
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is substituted into the velocity  expression (27) 
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To find a solution wi1 for time ti+1, the general equation of motion is written as follows: 

  }{][][ 1111   iiii PwKwCwM                                     (28) 
After substituting expressions for accelerations (28) and velocity (29) into (30) an algebraic 
system of equations is obtained  
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where 
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t
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1 )(])[(                          (31) 

To solve the resulting system of equations (31), it is necessary to specify at the initial 

moment the values of displacements  0w , velocity  w0 and accelerations{ }w 0 . 

Usually 0}{ 0 w  is taken. The Newmark method is unconditionally stable if 

                                                    
 25,025,0,5.0    ,                            (32) 

 
3 Results and Discussion  
 
Thus, the algorithm that implements the Newmark method for solving the matrix system of 
nonlinear differential equations (22) obtained in the course of finite element discretization 
with the initial condition (4) is as follows: 
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1. The initial values are set {w0}, w0 . 
2. A system of algebraic equations (29) is formed, the right-hand side of which contains 
nonlinear terms that determine the viscoelastic and nonlinear-viscous properties of the 
material, depending on the deformed state reached by the system. 
When accounting for the viscoelastic properties of the material with the above formulation, 
terms containing cubic terms from displacements are excluded in the right-hand side of the 
resulting resolving algebraic system of equations (22). In this case, the equation takes the 
following form 

 [M]{ w (t)}+[K]{w(t)}={P(t)}+ R t K
t

1
0

( )[ ]  {w(t)}d                        (33) 

with homogeneous initial conditions: 

0)0,(,0)0,( 
t
zwzw



                                                                     (34)                                 

The task is to determine the displacements of the points of the structure at different time 
points. The resulting nonlinear system of integro-differential equations (33) with initial 
conditions (34) is solved by the Newmark method. 
The algorithm that implements the Newmark method for solving the matrix system of 
nonlinear integro-differential equations obtained in the course of finite element 
discretization (33) is as follows:   

1. The initial values are set {w0}, w0 . 
2. A system of algebraic equations (29) with a linear right-hand side is formed, i.e. for  
{Wi (t)}=0. 
3. The system of linear algebraic equations (29) is solved, as a result of which the current 
value of the displacement vector {wi+1} is determined. 
4. The formulas of Newmark's method (26), (27) are used to determine the vectors of 
velocity and acceleration at the current time point ti+1. 

5. The value of integral R ti
t

t

i

i

1

1

( )


  d on the segment (ti-1, ti) is calculated by the 

formulas of numerical integration, for example, by the approximate formula of averages or 
by the formula of trapezoids. In the first case, the approximate value of the integral is 
defined as the product of the integrand at the point ti-/2 by the length of the segment . For 
i=1 ti--1=0.   In the second case, the value of the integral is approximately equal to  
0.5(ti-ti-1)[R1(ti-1)+R1(ti)],                                              (35) 
6. The resulting value of the integral is multiplied by the vector [K] {wi} and this vector is 
added to the right-hand side of the system (29). 
7. Steps 3 - 6 are repeated until the end of the process. 
In this formulation, with the developed methodology and the created computer program, a 
number of problems, previously investigated in a linearly elastic formulation, were solved 
[31-33]. In all the examples considered below, the values of the viscosity parameters are 
taken as R1 A=0.0194; =0.00000014; =0.075,  R2=2R1;   = 120000 [34]. 
As seen from the comparison (Fig. 3) of the presented results of forced vibrations of the 
pipe at the initial period, the elastic and viscoelastic solutions practically do not differ. 
Then, over time, the vibrations of a viscous pipe begin to differ markedly from the 
vibrations of an elastic pipe, the amplitude of which increases linearly. The amplitude of 
vibrations of points of a pipe with viscoelastic characteristics of the material, after reaching 
a certain maximum value, begins to gradually decrease. 
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7. Steps 3 - 6 are repeated until the end of the process. 
In this formulation, with the developed methodology and the created computer program, a 
number of problems, previously investigated in a linearly elastic formulation, were solved 
[31-33]. In all the examples considered below, the values of the viscosity parameters are 
taken as R1 A=0.0194; =0.00000014; =0.075,  R2=2R1;   = 120000 [34]. 
As seen from the comparison (Fig. 3) of the presented results of forced vibrations of the 
pipe at the initial period, the elastic and viscoelastic solutions practically do not differ. 
Then, over time, the vibrations of a viscous pipe begin to differ markedly from the 
vibrations of an elastic pipe, the amplitude of which increases linearly. The amplitude of 
vibrations of points of a pipe with viscoelastic characteristics of the material, after reaching 
a certain maximum value, begins to gradually decrease. 

Fig. 4 shows the results of forced vibrations of the pipe under sinusoidal damping effect. 

 
Fig. 3. Forced vibrations of the point z = 325m of the pipe at resonance mode w0 =0.1Asin(1.68t): 
 - viscoelastic solution;  -elastic solution 

 

 
Fig. 4. Forced vibrations of a point (z = 325m) of a pipe under the impact w0
=0.1Asin(1.68t)exp(-0.1t):  - viscoelastic solution;  -elastic solution 

 
Let us consider the forced unsteady vibrations of a high-rise pipe taking into account the 
viscoelastic properties of the material when the horizontal component of the real 
accelerogram of the Gazli earthquake acts on the base of the structure [35]. 

 
Fig. 5 Forced vibrations of the point (z = 325m) of the pipe under the effect of the accelerogram of 
the Gazli earthquake:  - viscoelastic solution;  -elastic solution 
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The results of solving the problem (Fig. 5) show that, at the initial period, the behavior of a 
viscoelastic structure does not differ from the behavior of an elastic one. Subsequently, an 
account for the viscoelastic properties of the structure material leads to a noticeable 
decrease in the vibration amplitude, high frequencies damp and the vibrations of the 
viscoelastic structure have a pattern of free damped vibrations with the fundamental 
frequency of natural vibrations. It is seen here that an account for the viscoelastic properties 
of the material, somewhat averages the displacements of the points of the pipe, leaving as 
significant only the oscillations of the fundamental mode. 

 
Fig. 6. Diagrams of the maximum values of shearing forces (a) and bending moments (b) arising in 
the pipe under the impact of a real accelerogram:  - elastic solution;  - viscoelastic 
solution 
 
Fig. 6 shows a comparison of the diagrams of the maximum values of shear forces and 
bending moment obtained under unsteady forced vibrations resulting from the impact of the 
high-frequency accelerogram of the Gazli earthquake on structures. The line with asterisks 
is the result of the elastic solution, and the solid line is the result of the viscoelastic solution.  
As seen from Fig. 6, higher eigenfrequencies are also manifested in an elastic structure 
under high-frequency effect; therefore, among the modes of vibrations of the structure, 
there are modes corresponding to higher frequencies. An account for the viscoelastic 
properties of the material not only significantly reduces the force factors arising in the body 
of the structure, and distributed in proportion to the mode of vibration achieved under a 
given impact, but also smoothers them.  
It should be noted that if the viscoelastic properties of the material are not taken into 
account, then the calculation gives the maximum values of the shear forces at the base of a 
high-rise structure while considering the viscoelastic properties of the material, the 
maximum values are reached at a certain height from the base. In addition, significant 
(though not maximum) forces arise in the upper part, at the level of 2/3Н (Н is the height 
of the structure). 
During a survey of the consequences of the earthquake in Fukui (Japan) on June 28, 1948, 
the destruction of more than 40 reinforced concrete smokestacks were observed at the level 
of 2/3 of the height. The destruction of pipes at this very point was explained by the lack of 
the methods used for calculating such unique structures and not considering a number of 
factors that describe the real properties of the material. In relatively flexible structures, 
during an earthquake, great forces can occur due to the higher modes of natural vibrations - 
the developed technique takes this into account. 
Now let us consider a general case when both nonlinear and viscoelastic properties of the 
material are taken into account. In this case, the above formulation does not allow any 
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simplifications on the right-hand side of the resolving system of nonlinear integro-
differential equations (22). The equation has the form  

[M]{ w (t)}+[K]{w(t)}={P(t)}+ R t K
t

1
0

( )[ ]  {w}d+EJ1{V(t)}- 

-EJ1 R t d
t

2
0

( )   {V(t)}                                     (22) 

with homogeneous initial conditions (34). 
The task is to determine the displacements of the points of the structure at different time 
points. The nonlinear system of integro-differential equations (22) with initial conditions 
(34) is solved by the Newmark method. 
The algorithm that implements the Newmark method for solving the matrix system of 
nonlinear integro-differential equations obtained in the course of finite element 
discretization (22) is as follows: 

1. The initial values are set {w0}, w0 . 
2. A system of algebraic equations (31) with a linear right-hand side is formed, i.e. for 
{Wi}=0. 
3. The system of linear algebraic equations (29) is solved, as a result of which the current 
value of the displacement vector {wi+1} is determined. 
4. The formulas of Newmark's method (26), (27) are used to determine the vectors of 
velocity and acceleration at the current time moment ti+1. 
5. The coordinates of the nonlinear vector {Wi}=E{Vi}, which are cubic polynomials in 
the found nodal displacements and rotation angles are calculated using formulas (31). 
6. The resulting vector is added to the right-hand side of the system (29). 
7. By the formulas of numerical integration, for example, by the approximate formula of 

averages, the value of the integral R ti
t

t

i

i

1

1

( )


  d on the segment (ti-1, ti)  is calculated as 

the product of the integrand at point ti-/2  by the length of the segment . For i=1 ti-1=0. 
8. The resulting value of the integral is multiplied by the vector [K] {wi} and this vector is 
added to the right-hand side of the system (31). 

9. The product of the nonlinear vector {Wi} by the integral R ti
t

t

i

i

2
1

( )


  d is found. 

This product is also added to the right-hand side of the system (29). 
10. Steps 3 - 9 are repeated until the end of the process. 

In such a general statement, with the developed methodology and the created computer 
program, problems are solved in linear, nonlinear, and viscoelastic formulations [32-33]. In 
all the examples considered below, the values of the viscosity parameters are taken as R1 

A=0,0194; =0,00000014; =0,075,  R2=2R1;   = 120000. 
Let us consider the forced vibrations of a nonlinear-visco-elastic high-rise pipe under 
kinematic excitation of the base according to the harmonic law [32]. The obtained 
horizontal displacements for the pipe point z = 325m are shown in Fig. 7. A line with 
asterisks corresponds to these displacements. Here, for comparison, the solid line represents 
the solution for the same point of a linearly elastic structure. 
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Fig. 7 Forced vibrations of the point z = 325m of the pipe taking into account the nonlinear 
viscoelastic properties of the material under the impact w0 =0.1Asin(1.68t):   - nonlinear-
viscoelastic solution;   - linear-elastic solution 
 
The analysis of the results presented shows that the general case, when nonlinear and 
viscous properties of the material are taken into account, leads to the greatest decrease in 
the amplitudes of displacements of the points of a high-rise structure in comparison with all 
previous options. Fig. 8 shows the results for sinusoidal damping of kinematic impact [33] 
at the base of the pipe. 

 
Fig. 8. Forced vibrations of the point z = 325m of the pipe, taking into account the nonlinear 
viscoelastic properties of the material under the impact w0 =0.1Asin(1.68t)ехр(-0.1t):   - 
nonlinear-viscoelastic solution;   - linear-elastic solution 
 
Thus, the study of the dynamic behavior of a high-rise structure taking into account the 
nonlinear and dissipative properties (different in nature) of the material, shows that the joint 
consideration of all these properties brings the resulting pattern closer to the one observed 
in reality. That is, the oscillation amplitude of the structure does not grow infinitely, but 
gradually decreases over time, and the maximum possible consideration of nonlinear and 
dissipative properties leads to the fastest damping of oscillations. 
 
4 Conclusions 
 

Based on the above studies, the following conclusions can be drawn: 
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Thus, the study of the dynamic behavior of a high-rise structure taking into account the 
nonlinear and dissipative properties (different in nature) of the material, shows that the joint 
consideration of all these properties brings the resulting pattern closer to the one observed 
in reality. That is, the oscillation amplitude of the structure does not grow infinitely, but 
gradually decreases over time, and the maximum possible consideration of nonlinear and 
dissipative properties leads to the fastest damping of oscillations. 
 
4 Conclusions 
 

Based on the above studies, the following conclusions can be drawn: 

1. A methodology and an algorithm for studying forced vibrations of high-rise structures in 
linear, nonlinear, and viscoelastic formulations under various kinematic impacts were 
developed, taking into account the viscoelastic properties of the material. 
2. The results of investigations of forced vibrations of a high-rise pipe, considering the 
viscoelastic properties of the material when the horizontal component of the real 
accelerogram of the Gazli earthquake acts on the base of the structure, show that an account 
for the viscoelastic properties of the structure material leads to a noticeable decrease in the 
amplitude of vibrations. At the same time, high frequencies and vibrations of the 
viscoelastic structure damp. It can be seen here that an account for the viscoelastic 
properties of the material somewhat averages the displacements of the pipe points, leaving 
as significant only the fundamental modes of vibrations. 
3. Higher frequencies are also observed in an elastic structure under high-frequency impact, 
therefore, among the modes of vibrations of the structure, there are modes that correspond 
to higher frequencies. An account for the viscoelastic properties of the material not only 
significantly reduces the force factors arising in the body of the structure, which are 
distributed in proportion to the mode of vibration achieved under a given impact, but also 
smoothers them. 
4. Combined consideration of the nonlinear and dissipative properties of the material brings 
the resulting pattern closer to the one observed in reality. Here, the vibration amplitude of 
the structure does not grow indefinitely, but gradually decreases over time. In a dynamic 
study, the maximum possible consideration of the nonlinear and dissipative properties of 
the material of structures leads to the fastest damping of the vibration amplitude. 
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