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Abstract. The plate-finned tube evaporator performance, in terms of heat 
transfer rate and refrigerant pressure drops, is influenced by several choices 
done during the design process to be carried out complying with different 
constraints. In this paper different refrigerant circuitry layout options 
together with other parameters variations were investigated with the 
purpose of supporting designers. Performance predictions were calculated 
using the hybrid method as well as appropriate Performance Evaluation 
Criteria (PEC) were adopted to select the best layout. The hybrid method 
has been here revised and improved aiming at modelling heat exchangers 
with an approach closer to real configurations that include complex circuit 
layouts. The method was chosen as its main advantage (high accuracy in 
the results with low computational costs) allowed to easily perform 
operating conditions modifications to be compared.  

1. Introduction  
Good design and optimization processes are of great importance for heat exchangers in 
order to reduce either production or operating costs. The design process itself should be 
lean and accurate at the same time: often heat exchangers are oversized due to poor 
accuracy in design process leading to higher production costs, while, on the other hand, 
greater precision achieved with CFD approaches can severely slow down the optimization 
process and still produce high design costs.  
In order to save computational efforts, while getting high accuracy of the results, Starace et 
al. [1] developed a powerful alternative design procedure, the hybrid method, using a multi-
scale approach starting from data sets coming from either numerical, analytical correlations 
or from experimental investigations.  
The hybrid method was successful implemented on compact cross-flow heat exchangers 
using the results of CFD simulations performed by Carluccio et al. [2] on both the finned 
surfaces of the HXs. Then, it was adapted to countercurrent evaporative condensers using 
data coming from small-scale experimental investigations [3]. Results show how the 
method is effective in predicting the outlet temperature and humidity with a deviation of 
2.5% and 4% respectively compared to experimental data. The same method is also suitable 
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for calculating the performance of plate-finned evaporators with simple refrigerant circuit 
layout [4]. Other approaches using finite element discretization have been developed for the 
design of fin and tube exchangers such as that one proposed by Corberan et al. [5] applied 
on finned tube evaporators and condensers, considering also the air dehumidification 
process. Tarrad and Al-Nadawi [6] developed a small-scale numerical model to calculate 
the performance of finned tube evaporators, working with pure and zeotropic refrigerants, 
showing a good matching of calculated to experimental data. Empirical correlations are, 
instead, used to evaluate the heat transfer coefficients, the pressure drops and the flow 
regimes inside the tubes of a fin and tube evaporator through the model proposed by Tong 
et al. [7]. A finite volume approach was also used by Joppolo et al. [8] to study the 
influence of circuit layout on a fin and tube condenser performance through the ε-NTU 
method. Genetic algorithm or simulation tools for the optimization of the refrigerant 
circuitry have been developed considering the maximum heat exchanger capacity [9,10], 
the minimum heat transfer surface under the same heat transfer rate [10] or the minimum 
entropy production [11], without evaluating refrigerant pressure drop and so operating costs 
during the optimization process. According to studies conducted by Yun and Lee [12] and 
Matos et al. [13], the best way to reduce costs and optimize the geometry of a heat 
exchanger is to modify the circuitry layout with respect to changing other geometrical 
parameters such as the fin and the tube geometry or the overall dimensions which are often 
conditioned by installation or production constraints.  
In the present work, a new feature has been added to the hybrid method algorithm, chosen 
for its characteristic of combining accuracy and low computational costs, in order to be 
applied also to evaporative exchangers with complex circuit arrangement. The method uses 
a discretization procedure of the HX whole geometry and for every elementary volume 
performs a routine on both refrigerant and air side in order to obtain heat transfer 
parameters through a regression technique. 
Several Performance Evaluation Criteria (PEC) have been developed in order to evaluate 
the performance of heat exchangers: they can be categorized as criteria based on the first 
law of thermodynamics [14] and criteria based on the second law of thermodynamics [15]. 
Furthermore, criteria used for heat exchangers operating with single-phase fluids are not 
suitable for application in two-phase heat exchangers [16]. In this work, a trade-off analysis 
has been performed to compare different refrigerant circuitry arrangements, considering 
two-phase fluid’s effects. 

2. The hybrid method 
The evaporator considered in this case study is a staggered finned tubes exchanger, working 
with a refrigerant that evaporates due to the heat exchange with the air flowing between the 
fins in the normal direction to the tubes. The refrigerant flow is divided into two or more 
complex circuits, consisting of the same number of pipes. The curves that join the pipes are 
neglected from the heat transfer process and, therefore, considered adiabatic. 
The model uses a three-dimensional matrix to identify each of the tube-centered elementary 
cells which the entire geometry of the HX is divided into (Fig. 1). As the evaporator is 
arranged in staggered pipes, at the bottom of the odd rows and at the top of each even row 
is placed an edge cell that does not host any pipe. The calculation of the parameters in the 
border cells is treated separately. For all the other cells the heat transfer rate, as well as the 
wall temperature, is calculated through an iterative procedure that needs the following input 
data: 
- the HX geometry; 
- the refrigerant circuit layout; 
- the operating conditions; 
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- the regression coefficients, obtained by applying the results of experimental, numerical or 
analytical studies. 

 
Fig. 1: Discretization in channels, tube sections and rows. 

Once these data have been declared, the algorithm identifies, for each cell, the refrigerant 
flow direction, the circuit which the tube belongs to and also the branch tube (Fig. 2 (a)), 
i.e. the previous tube in the flow order of the refrigerant, in order to assign to each cell the 
refrigerant flow rate and the vapor quality corresponding to the considered circuit. In the 
first delivery cell of each circuit, the flow rate and the vapor quality are set equal to the 
input parameters; for all the other cells the algorithm assigns the same characteristics of the 
refrigerant at the outlet of the branch pipe, assuming that curve pipe sections are adiabatic. 
Air flow through the first row of the HX is considered uniformly distributed, while the 
distribution in each of the following rows is obtained as a mixture of the air coming from 
the cells of the previous rows (Fig. 2 (b)). Air streams in other directions, apart from that 
one normal to the plane containing pipes, are considered negligible.  
 

 
Fig. 2: Representation of cells and pipes (a) and air path (b). 

 
For each cell of the HX, the algorithm iteratively calculates the wall temperature of the pipe 
as long as the convergence condition between the heat transfer rate on the air side and that 
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on the refrigerant side is verified, considering the convective contribution of the air and 
refrigerant and conductive contribution of the piping: 

 !" # = !" % (1) 
The other thermodynamic variables are then obtained through correlations in Table 1 as a 
function of the inner and outer wall temperature. 

Table 1: Correlations for refrigerant side and air side variables. 

Refrigerant side Reference Air side Reference 
Total heat transfer [17,18] Lewis number [20] 
Pressure drop [19] Heat transfer coefficient [21] 
  Overall fin efficiency [22] 
  Pressure drop [23] 
  Friction factor [24] 
  Air specific humidity [25] 

 
The heat transfer rates of the edge cells are not obtained through the convergence routine, 
but they are calculated as 10% of the heat transfer rates of the neighbour cells, which are 
located below the edge cell in odd ranks and above in even ranks (Fig. 2 (a)). On the other 
hand, the neighbour cells are expected to have a higher heat exchange than the others under 
the same conditions, due to a bigger exchange surface, as the edge cell does not contain any 
pipe.  
Once the calculation has been completed on all the cells, the algorithm checks pressure 
drops on the air-side and refrigerant-side. The pressure drop at air side is calculated as: 

 ∆(%)*, ,- = ∑ ∆(%)*, ,, /-0/
/12  (2) 

Then, if the condition in Eq. (3) is not satisfied, the algorithm distributes the air mass flow 
rate once again in each cell, adjusting the flow rate proportionally to the deviation from the 
mean value. 

 ∆(%)*, ,- = ∆(%,3 (3) 
 ∆(#,4 = ∆(#,3 (4) 
The pressure drops for each refrigerant circuit should be equal to the mean value, with a 
tolerance of 1%, as in Eq. (4). Then, the algorithm distributes the refrigerant flow rates 
among the circuits until the condition (4) is verified for each z-th circuit. The air and 
refrigerant flow rate are modified in accordance with the principle of conservation of the 
total input mass flow rate. 
Frost formation on tube surface is not yet modelled. 

2.1. Regression analysis 

A quadratic regression analysis aims to determine the relationship between the input and 
output variables on both the air and the refrigerant sides. In this case, the data used to 
perform the regression technique were calculated from the experimental correlations 
showed in Table 1, but the high flexibility of the model allows to use both the results of 
experimental tests or numerical analysis, when available. Refrigerant side response variable 
xR,out is calculated as in Eq. (5), while air side response variables TA,out, iA,out, ΔpA,out are 
obtained through Eq. (6). 
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 5 ∙ 78  (5) 

 5 ∙ 98   (6) 

where β is the vector containing the 15 polynomial coefficients obtained through the 
regression analysis, while α and γ are the vectors whose elements are showed in Table 2 
and Table 3 respectively. 

Table 2: Elements of vector α. 

Element Value Element Value Element Value 
α0 1 α5 >?  ?,!" α11 #?#$,! 
α1 >? α6 >?#$,! α12 >?

' 
α2  ?,!" α7 >?#? α13  ?,!"'  
α3 #$,! α8  ?,!"#$,!  α14 #$,!

'  
α4 #? α9  ?,!"#? α15 #?' 

 
Table 3: Elements of vector γ. 

Element Value Element Value Element Value 
γ0 1 γ 5 #.,!"/0.,!" γ 11 1.,!"#$,2 
γ 1 #.,!" γ 6 #.,!"1.,!" γ 12 #.,!"'  
γ 2 /0.,!" γ 7 #.,!"#$,2 γ 13 /0.,!"

'  
γ 3 1.,!" γ 8 /0.,!"1.,!" γ 14 1.,!"'  
γ 4 #$,2 γ 9 /0.,!"#$,2 γ 15 #$,2

'  

3. Circuitry layout 
When designing an evaporator, the optimization process is very complex, due to the high 
number of design variables. For example, when high flow rates are necessary, splitting the 
refrigerant flow across two or more circuits is the way to reduce refrigerant pressure drops. 
In this work, four different tests, with three different sets of circuitry configurations, have 
been run in order to investigate the influence of circuit layout on HX performance in terms 
of heat transfer rate and refrigerant pressure drops. Set 1, shown in Fig. 3, has four layouts: 
the circuit entrances are placed all on the same side of the heat exchanger as well as the 
outlet pipes, which were located on the opposite side. The air flowed across the fins, normal 
to the axes of the pipes and the air inlet is placed on the same side of refrigerant entrances. 
In Set 2 (Fig. 4), instead, the air inlet is located on the same side of refrigerant outlets. Set 3 
(Fig. 5) is composed by three configurations, all made by 4-circuits layouts with a greater 
number of pipes per row (12 tubes per row in Set 3, 8 tubes per row in Set 1 and Set 2).  
Each test had a specific goal, as expressed below: 

- Test a: investigation on circuitry layouts Set 1 with different refrigerants; 
- Test b: investigation on circuitry layouts Set 1 with different refrigerant flow rates, 

but same heat transfer rate; 
- Test c: investigation on circuitry layouts Set 2 compared with Set 1; 
- Test d: investigation on circuitry layouts Set 3 composed all by 4-circuits layouts 

in order to help designers to optimize evaporator circuit arrangement. 
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Fig. 3: Circuitry layouts Set 1. 

 

 
Fig. 4: Circuitry layouts Set 2. 

 
Fig. 5: Circuitry layouts Set 3. 

6

E3S Web of Conferences 312, 03004 (2021)	 https://doi.org/10.1051/e3sconf/202131203004
76° Italian National Congress ATI 



 

 

 
Fig. 3: Circuitry layouts Set 1. 
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4. Results and discussion 
Results of hybrid method implementation on a 5-rows evaporator, with different circuit 
configurations, are here discussed in terms of heat transfer rate, refrigerant pressure drops 
and compared through a Performance Evaluation Criteria. As shown in Table 4, four tests 
have been carried out on three different sets of configurations, with the aim to help 
designers to make design choices, by varying the refrigerant fluid (test a), the refrigerant 
mass flow rate at same heat transfer rate (test b), the air inlet side (test c) and the number of 
tubes per row (test d). Geometrical parameters of tested coil are summarized in Table 5. 
 

Table 4: Air and refrigerant inlet conditions for test a, test b, test c and test d. 

Quantity Unit Test a Test b Test c Test d 

Refrigerant fluid - 
a) R134a/R410a/R32 

b) R404a/R507a/ 
R1234yf/R1234ze 

R134a R32 R32 

Number of tubes per row - 8 8 8 12 

Refrigerant mass flow rate kg/s a) 0.047 
b) 0.058 

0.047/0.103/ 
0.122/0.195 0.036 0.047 

Air mass flow rate kg/s a) 0.644 
b) 0.515 0.644 0.644 0.940 

Evaporation temperature K 271.5 271.5 271.5 271.5 
Air inlet temperature K 288 288 288 288 
Air inlet relative humidity - 0.65 0.65 0.65 0.65 
Inlet vapor quality - 0.2 0.2 0.2 0.2 

Air inlet velocity m/s a) 5 
b) 4 5 5 5 

 
Table 5: Geometrical parameters of tested coil. 

Tubes Fins 

Quantity Unit Value Quantity Unit Value 
Material - Copper Material - Alluminium 
Internal diameter mm 7.38 Thickness mm 0.1 
External diameter mm 7.94 Pitch mm 2 
Length mm 500      
Longitudinal pitch mm 21.65      
Transversal pitch mm 25      

 
In test a the goal was to investigate different performance, while changing the number of 
circuits. Variations of heat transfer rate and refrigerant pressure drop as a function of 
number of circuits are shown in Fig. 6 for case a) with refrigerant R134a, R410a and R32 
and in Fig. 7 for case b) with refrigerant R404a, R507a, R1234yf and R1234ze. Test a was 
carried out on circuitry layouts Set 1, as shown in Fig. 3. 
Results showed that heat transfer rate decreases almost linearly when the considered 
number of circuits increases. A heat transfer rate mean reduction for the 8-circuits 
configuration of 11.14%, for case a) and of 12.12% for case b) with respect to 2-circuits 
configuration can be observed for all the refrigerant considered. Increasing the number of 
circuits leads to a reduction in the refrigerant flow rate passing through each circuit and, 
therefore, to a reduction of the convective heat transfer coefficient which, consequently, has 
a negative effect on the global heat transfer. As a consequence, the vapor quality at the 
outlet of the 8-circuits configuration was found lower than the 2-circuits one. On the other 
hand, for all the considered refrigerants, pressure drops strongly decrease with a parabolic 
trend as the number of circuits increase, due to flow rate reduction through each circuit.  
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Fig. 6: Test a, case a) : heat transfer rate (a.1) and refrigerant pressure drops (a.2) for each circuit 
layout of Set 1 for refrigerants R134a, R410a, R32. 

 
Fig. 7: Test a, case b) : heat transfer rate (b.1) and refrigerant pressure drops (b.2) for each circuit 
layout of Set 1 for refrigerant R404a, R507a, R1234yf and R1234ze. 

 

Fig. 8: Test b: Refrigerant pressure drops (a) and mean outlet vapor quality (b) for each circuit layout 
of Set 1. 
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Fig. 7: Test a, case b) : heat transfer rate (b.1) and refrigerant pressure drops (b.2) for each circuit 
layout of Set 1 for refrigerant R404a, R507a, R1234yf and R1234ze. 

 

Fig. 8: Test b: Refrigerant pressure drops (a) and mean outlet vapor quality (b) for each circuit layout 
of Set 1. 

 

 

 
Fig. 9: Test c : Heat transfer rate (a) and refrigerant pressure drops (b) for each circuit layout of Set 1 
in comparison with Set 2. 

Among the refrigerants of case a, R32 seems to be the most performing one as it has the 
highest heat transfer rate with almost the lowest pressure drops. The same cannot be said 
for R1234ze which has the highest heat transfer rate among case b) refrigerants, but it 
shows also the highest pressure drops. On the other hand, R134a shows the worst 
performance with lowest heat transfer rate and highest pressure drops. 
Test b was carried out with refrigerant R134a on Set 1 circuitry configuration (Fig. 3), with 
the aim to compare different layouts at same heat transfer rate in terms of refrigerant 
pressure drops and outlet vapor quality, by varying refrigerant mass flow rate at inlet, as 
shown in Table 4. 
Results in Fig. 8 show that the 8-circuits configuration has a lower refrigerant pressure 
drops at same heat transfer rate, with respect to 2-circuits layout. As a consequence, a coil 
designer could choose a 8-circuits configuration in order to reduce operating costs, by 
increasing the refrigerant flow rate and maintaining the same performance in terms of heat 
transfer rate. In test b it is shown how it’s possible to decrease pressure drops of 45.3% by 
increasing the refrigerant mass flow rate of 314%, at same performance level only adopting 
a 8-circuit configuration instead of 2-circuits one. 
Choosing a layout with a high number of circuits, then, leads to another consequence: if a 
given heat transfer rate has to be reached, the total flow rate has to be increased, due to the 
lower local velocities and the decreased mean outlet vapor quality (in Fig. 8 (b), the vapor 
quality goes from 0.99 in the 2-circuits configuration to a value of 0.35 in the 8-circuits 
layout (-64%). Here the principle of the flooded evaporator can be recognized, that implies 
the recirculation of the liquid phase and guarantees that a saturated vapor leaves the 
evaporator towards the compressor. 
Test c was carried out to compare circuitry layouts of Set 1 with those of Set 2. Both sets 
have the same refrigerant path, with the same number of circuits, with the difference that in 
Set 1 the air inlet is placed on the same side of the refrigerant inlets, while in Set 2 air enters 
on the side where the refrigerant outlets are located. R32 was used in Test c as working 
fluid with inlet conditions shown in Table 4. Results in Fig. 9 shows how also for circuitry 
configurations Set 2 the heat transfer rate decreases linearly as the number of circuits 
increases (a). However, by comparing Set 1 with Set 2 it is clear that the air inlet side does 
not significantly affect the performance of the HX in terms of heat transfer rate (Fig. 9 (a)). 
In any case, Set 2 has worse performance than Set 1 with an average deviation of 0.74% 
less, against a reduction in refrigerant pressure drops of 6.78% compared to those of Set 1. 
Finally, the same parabolic trend of Test a and Test b is confirmed for refrigerant pressure 
drops: as the number of circuits increases, the pressure drops strongly reduce (Fig. 9 (b)).  
Test d was run using R32 on the three configurations of Set 3 in order to study the impact of 
refrigerant path on the coil performance, keeping constant the number of circuits. For this 
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reason, the HX used in Set 3 has a greater number of tubes per row than that in Set 1 and 
Set 2. 
Fig. 10 shows no significant influence of refrigerant path on heat transfer rate has been 
found for the studied cases a), b) and c) of Set 3. Heat transfer rate shows indeed a 
maximum deviation of -0.03% of configuration b) with respect to a). A slightly larger 
difference, but always small in absolute terms, can be noticed if a comparison in terms of 
refrigerant pressure drops is made: the best layout is c) with a 0.4% lower pressure drops 
compared to configuration a). 
 

 
Fig. 10: Test d : heat transfer rate and refrigerant pressure drops for circuitry configuration a), b) and 
c) of Set 3. 

4.1 Performance Evaluation Criteria 

Main performance changes affected by heat exchanger design choices come from the 
following variations [16]: 

- heat transfer surface area; 
- air flow rate to the evaporator at fixed condenser and evaporator temperature 

difference; 
- refrigerant flow rate at fixed evaporator heat duty. 

Compressor power is affected by pressure drop in the whole circuit of a refrigeration unit as 
well as by the LMTD change caused by the saturation pressure decrease in both the 
evaporator and the condenser. Thus, the choice for the heat exchanger is a key factor to the 
whole unit design, while satisfying the imposed constraints.  
Extrapolating data from the test results discussed in section 4, diagrams in Fig. 11 and Fig. 
12 show the trade-off between UA and ΔpR for different refrigerants and per number of 
circuits,. All tests were performed at the same coil geometry and either air or refrigerant 
inlet conditions but different refrigerant paths. Each point on the diagram corresponds to a 
single tested circuitry layout (set 1, Fig. 3). It must be here underlined that, as demonstrated 
with Test d and as discussed in section 4, even if an optimization of the refrigerant path 
with the same number of circuits is possible, the expected variations in terms of UA and 
pressure drop would be very small. As a consequence, the values in Fig. 11 and Fig. 12 can 
be assumed representative of the real evaporator performance referred to a given number of 
circuits. 
All refrigerants show the same trend but with different curve slope due to specific 
properties of each refrigerant: the 8-circuit configuration produces a small reduction in UA 
but also a strong decrease in its pressure drop, if compared to 2-circuit layout. 
Considering all the refrigerants and comparing the 8-circuits configuration with the 2-
circuits one the pressure drop variation range goes from 87.63% to 88.05%, with  minimum 
and maximum variations in UA respectively of 11.36% and of 23.69%. From this point of 
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compared to configuration a). 
 

 
Fig. 10: Test d : heat transfer rate and refrigerant pressure drops for circuitry configuration a), b) and 
c) of Set 3. 

4.1 Performance Evaluation Criteria 

Main performance changes affected by heat exchanger design choices come from the 
following variations [16]: 

- heat transfer surface area; 
- air flow rate to the evaporator at fixed condenser and evaporator temperature 

difference; 
- refrigerant flow rate at fixed evaporator heat duty. 

Compressor power is affected by pressure drop in the whole circuit of a refrigeration unit as 
well as by the LMTD change caused by the saturation pressure decrease in both the 
evaporator and the condenser. Thus, the choice for the heat exchanger is a key factor to the 
whole unit design, while satisfying the imposed constraints.  
Extrapolating data from the test results discussed in section 4, diagrams in Fig. 11 and Fig. 
12 show the trade-off between UA and ΔpR for different refrigerants and per number of 
circuits,. All tests were performed at the same coil geometry and either air or refrigerant 
inlet conditions but different refrigerant paths. Each point on the diagram corresponds to a 
single tested circuitry layout (set 1, Fig. 3). It must be here underlined that, as demonstrated 
with Test d and as discussed in section 4, even if an optimization of the refrigerant path 
with the same number of circuits is possible, the expected variations in terms of UA and 
pressure drop would be very small. As a consequence, the values in Fig. 11 and Fig. 12 can 
be assumed representative of the real evaporator performance referred to a given number of 
circuits. 
All refrigerants show the same trend but with different curve slope due to specific 
properties of each refrigerant: the 8-circuit configuration produces a small reduction in UA 
but also a strong decrease in its pressure drop, if compared to 2-circuit layout. 
Considering all the refrigerants and comparing the 8-circuits configuration with the 2-
circuits one the pressure drop variation range goes from 87.63% to 88.05%, with  minimum 
and maximum variations in UA respectively of 11.36% and of 23.69%. From this point of 

 

 

view, R32 shows the best behaviour among the tested refrigerants . Switching from a 2-
circuits configuration to a 8-circuits one, with a small reduction in UA of 11.36%, with R32 
it is actually possible to obtain a decrease of the pressure drop of 87.63%. On the other 
hand, working with R1234ze, by choosing an 8-circuits configuration instead of a 2-circuits 
on an evaporator, achieving a reduction in pressure drop of 87.89% costs  a more 
significant deterioration of UA equal to 23.69%. 
 

 

Fig. 11: UA vs refrigerant pressure drop diagram for refrigerants R134a, R410a and R32 showing the 
effect of the number of circuits choice. 

 

Fig. 12: UA vs refrigerant pressure drop diagram for refrigerants R404a, R507a, R1234yf and 
R1234ze showing the effect of number of circuits choice. 
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5. Conclusions 
In this work, a new feature has been added to the hybrid method in order to make it 
adaptable to plate finned tube evaporators with complex circuit arrangements. The multi-
scale model which performs a local analysis to obtain the heat transfer properties on each 
elementary volume, was implemented to compare different circuitry layouts in order to give 
designers useful elements for the design process. Here, data from experimental correlations 
found in literature were used to find, through the regression technique, the prediction 
function, then used to compute refrigerant and air side thermodynamic properties. Four 
different tests were run on three sets of circuits. Results showed that heat transfer rate 
decreases almost linearly when the considered number of circuits increases, while 
refrigerant pressure drops strongly decrease with a parabolic trend due to flow rate 
reduction through each circuit, for all the tested refrigerants (R134a, R410a, R32, R404a, 
R507a, R1234yf, R1234ze). Other tests performed with R134a on different circuitry 
arrangements at same heat transfer rate showed that an 8-circuits configuration can be 
chosen to reduce refrigerant pressure drop of 45.3% and so operating costs, by increasing 
the refrigerant flow rate of 314% while maintaining the same performance in terms of heat 
transfer rate. Also, vapor quality decreases, with the possibility to recirculate the liquid 
phase through the evaporator, making sure that the fluid reaches the compressor as 
saturated vapor, as happens in flooded evaporators.  
More investigations performed on other circuitry layouts showed that the air inlet side does 
not significantly influence the performance of the HX in terms of heat transfer rate. 
Anyway, configurations with air inlet placed on the opposite side with respect to the 
refrigerant entrees had worse performance than those on the same side with an average 
deviation of 0.74% less in heat transfer rate, against a reduction in refrigerant pressure 
drops of 6.78%. In addition, other tests showed that a fine optimization of the refrigerant 
path at same number of circuits is possible, but the benefit in terms of increased 
performance is very small. Finally, by extracting the data from all the tests, trade-off curves 
showing UA against refrigerant pressure drop were made for all the tested refrigerants and 
per number of circuits, in order to give designers a criterion to evaluate the performance of 
an evaporator when the circuitry configuration changes. 
 
Nomenclature 
A heat exchange surface (m-2) Greek symbols 
G mass flux (kg m-2 s-1) β Regression coefficient 
i enthalpy (J kg-1) Subscripts 
LMTD log-mean temperature difference (K) A,R air, refrigerant 
m mass flow rate (kg s-1) i inner 
∆3 pressure drop (Pa) in inlet 
4 heat transfer rate (W) m mean value 
RH relative humudity o outer 
T temperature (K) out outlet 
U overall heat transfer coefficient (W m-2 K-1)  w wall 
V velocity (m s-1) Abbreviations 
w air specific humidity (kg-1) HX heat exchanger 
x vapor quality  

 
References 
1. G. Starace, M. Fiorentino, M.P. Longo, E. Carluccio, A hybrid method for the cross 

flow compact heat exchangers design, Appl. Therm. Eng., 111, 1129–1142 (2017) 
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