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Abstract. Stirling engines are a variety of heat engines which are 

capable of using heat from various sources including low temperature 

renewables. This work examines performance of a lab scale low temperature 

gamma type Stirling engine with a drive train modified with oval elliptical 

gears.  The gears were added to dwell the engine piston motion to attempt to 

improve the thermodynamic performance of the engine by better replicating 

the ideal Stirling cycle. A variety of dwelling piston configurations were 

tested on both the displacer and power piston. It was observed that that the 

piston dwelling had the anticipated effect of changing the engine indicator 

diagrams to more closely resemble the ideal cycle, however there were no 

substantial improvements to maximum engine power. It was observed that 

dwelling the displacer piston caused substantial reductions to engine running 

speeds and resulted in maximum power being reduced. In the case of power 

piston dwelling the indicator diagram was enlarged and there were slight 

increases to maximum power production. Overall the added complexity of 

dwelled piston motion systems is not likely an advantageous method of 

increasing the power output of low temperature difference Stirling engines.  

1 Introduction 

Stirling engines are a variety of thermodynamic engines that run off of external thermal 

sources and sinks. Their ability to use a wide variety of heat sources has spurred interest in 

developing Stirling engines for renewable energy recovery from sources such as solar [1] and 

biomass [2], as well as potentially very low temperature difference heat sources such as waste 

heat [3] or low grade geothermal sources [4]. The useful mechanical energy available for 

thermodynamic conversion at low temperature ratios (below 100 °C) is inherently low, with 

a Carnot limit of ~25% efficiency at a source temperature of 100 °C and a sink temperature 

of 5 °C. For practical engines, efficiencies are much lower still [5]. As such it is desirable to 

maximize the thermodynamic yield of these low temperature engines by any available means.  

A suggested method for improving power is to better replicate the ideal thermodynamic 

cycle by modifying the engine drive mechanism to dwell the engine pistons [6]. This work 

details the construction and testing of a lab scale low temperature difference gamma Stirling 
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engine whose drive mechanism was modified with non-circular oval elliptical gearing that 

better replicates the ideal Stirling thermodynamic cycle. Performance results of the engine 

are provided with recommendations as to the utility of such modifications on low temperature 

engines. 

2 The Stirling Cycle and Kinematic Engines 

2.1 Thermodynamic Cycle of a Practical Engine 

The Stirling cycle is a heat engine where only heat flows through the engine while a captive 

mass of compressible working fluid contained in the engine undertakes the thermodynamic 

cycle of the engine. The classic academic description of the Stirling cycle describes the 

thermodynamic processes as discrete, sequential steps of the closed loop cycle. This ideal 

cycle is described by the following processes with reference to Figure 1 [7]: 

1. Isochoric heating 

2. Isothermal expansion 

3. Isochoric cooling 

4. Isothermal expansion 

The indicated work done by the engine per cycle W is the difference between the absolute 

expansion work, We, minus the absolute compression work, Wc, as described by the following 

[8]:  

𝑊 = 𝑊𝑒 − 𝑊𝑐 =  ∫ 𝑃𝑒(𝑉)𝑑𝑉 −   ∫ 𝑃𝑐(𝑉)𝑑𝑉  
𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥

𝑉𝑚𝑖𝑛

𝑉𝑚𝑎𝑥

 (1) 

where 𝑉𝑚𝑖𝑛 = Minimum engine volume 
 

 𝑉𝑚𝑎𝑥 = Maximum engine volume 
 

 
𝑃𝑒 = Expansion pressure 

 

 
𝑃𝑐 =  compression pressure 

 

 

 
Figure 1. Representative pressure volume diagram of the ideal and practical Stirling cycle. 
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The loop formed by the cycle expressed by the engine pressure and volume is commonly 

referred to as the engine indicator diagram as shown in Figure 1. In practical engines, the 

mechanisms by which the cycle is carried out results in overlaps in the steps of the 

thermodynamic processes, which has the resulting effect of the rounding and reduction of the 

indicated work area of the cycle when compared to an ideal cycle carried out for the same 

conditions. Expanding the practical indicator diagram can potentially increase the available 

work per cycle of the engine, and if done without other penalty, may thus increase the power 

output. 

2.2 The Kinematic Gamma Stirling Engine 

Numerous variants of the Stirling cycle machine have been developed over time and are 

commonly classified based on the way each machine moves the engine working fluid to carry 

out the thermodynamic cycle [7]. This work focuses on kinematic gamma type Stirling 

engines [4], where kinematic indicates that the piston motions are mechanically linked and 

controlled via the drive mechanism. The defining characteristic of a gamma Stirling engine 

is that it has two piston cylinder sets as embodied in Figure 2. The isochoric heating and 

cooling phases are carried out by the movement of a displacer piston, which shuttles the 

working fluid from the expansion space of the engine to the compression space. In most large 

engines the gas path routs the working fluid through a set of heat exchangers and a 

regenerator which are the primary means of transferring heat into and out of the working 

space of the engine [7]. The compression and expansion phases of the cycle are accomplished 

via a power piston, which is driven by the differential pressure of the engine working fluid 

and the pressure outside of the working space, referred to as the buffer pressure [8]. 

 
Figure 2. Generalized embodiment of an offset gamma Stirling engine depicting the major 

components. 

For most kinematic engines the pistons are linked to a common rotating output shaft via 

a slider-crank mechanism that converts between linear and rotational motion in an 
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approximately sinusoidal relationship. For gamma engines the work done by the power piston 

drives the output shaft, while the displacer piston is driven by the same shaft, sustaining the 

cycle. The phasing difference between the motions of the two pistons is what causes the 

sequential thermodynamic processes to form the Stirling cycle. For gamma engines, a phase 

difference of 90° is most optimal [9]. 

The overlapping motion of the displacer and power pistons result in the thermodynamic 

steps of the cycle overlapping as well. The thermodynamic overlap results in a practical cycle 

indicator diagram that is smaller and rounder than the ideal cycle as shown in Figure 1, with 

the associated loss of work output per cycle. If the overlap in piston motion can be reduced 

and the associated thermodynamic processes made more discontinuous, there is the 

opportunity to improve the practical engine indicator cycle to one that more closely replicates 

the ideal case with greater work per cycle. 

3 Cycle Modification Using Non-Circular Gears 

Various mechanisms have been proposed to be integrated into the engine drive mechanisms 

to achieve more discontinuous cycles with the aim of expanding the indicated work. Such 

methods have included using a cam follower drive [10], multi bar linkages [11], and elliptical 

gear trains [12] to modify piston motion by changing the rotational speeds of the piston crank 

arms relative to the constant speed engine output shaft. 

The decision to modify piston motion with non-circular gears was made due to the ease 

of retrofitting an existing engine with the system, as well as the flexibility of interchanging 

multiple gear sets to test various motion modification profiles. A generalized embodiment of 

a kinematic gamma Stirling engine modified with non-circular gears is depicted in Figure 3. 

 
Figure 3. Embodiment of an offset gamma Stirling engine with a modified drive train with non-

circular gears. 
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The non-circular gear profile used were bi-lobed elliptical profiles, also known as oval 

elliptical profiles [13]. For identical oval non-circular gear pairs the relationship between the 

angle of the input shaft, Ø1, and the angle of the output shaft, Ø2, as governed by the 

transmission function is: 

tan ∅2 =  
1 − 𝑒

1 + 𝑒
 tan ∅1 (2) 

where ∅2 = Angular position of driven gear 
 

 
∅1 = Angular position of driving gear 

 

 
𝑒 = Eccentricity of oval elliptical gear 

 

The derivative function, or speed ratio, which describes the relative angular velocity of 

the driven gear with respect to the driving dear is defined by: 

𝑘21 =  
1 − 𝑒2

1 + 𝑒2 − 2𝑒(cos 2∅1)
 (3) 

where 𝑘21 = derivative function of gear 2 in relation to gear 1 
 

 
∅1 = Angular position of driving gear 

 

 
𝑒 = Eccentricity of oval elliptical gear 

 

The derivative function and transmission functions for oval elliptical gears cycle twice 

per revolution which matches the cycle modification requirement for dwelling the engine 

pistons twice per cycle. Two oval elliptical gear profiles were chosen for the investigation, 

e=1/5 and e=1/3 based on the maximum derivative function value of each set being 𝑘21=1.5 

and 𝑘21=2.0.  

By phasing the lobes of the oval gears with the crank arms, the dwell time of the pistons 

at top and bottom dead centre positions is prolonged. The displacement profiles of a set of 

engine pistons based on an engine configured as in Figure 3 is shown in Figure 4. The 

displacement profiles are derived from the sin(∅2) value of the output of the transmission 

function described in equation (3) when applying various gear eccentricities to the angular 

position of the output shaft ∅1. This approximates the displacement of a piston coupled to a 

crank-slider mechanism with a very long connecting rod.  
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Figure 4. Normalized displacement of engine pistons for various combinations of non-circular 

gearing and crank shaft phasing. 

Examining Figure 4 it can be seen that when phased appropriately, the oval elliptical 

non-circular gears are capable of substantially increasing the duration of dwell of the engine 

pistons at top and bottom dead center. The reduction in overlap of the displacer piston and 

power piston motion should result in more discrete thermodynamic processes in the practical 

Stirling cycle in line with the goals of the investigation.  When phased 90° relative to the 

crank arm the gears are also capable of reducing dwell, with the e=1/5 gear showing a 

distinctly triangular displacement waveform.  

4 Experimental Setup 

4.1 EP1 – M Test Engine 

To test the effects of piston motion modification using non-circular gearing a lab scale 

gamma Stirling engine was modified with a new drivetrain. The original engine, named the 

EP1, was designed and built in 2018 [14] [15], for operation at temperature differentials 

between 0 °C and 100 °C. The engine is a kinematic gamma engine design with an offset 

power piston. Numerous modifications have been made to the engine to improve its 

performance since its construction to bring it up to the current EP1-M configuration which is 

shown in partial section view in Figure 5. This work details the engine as configured for the 

trial of the modified piston motion profiles. 

The body of the engine is manufactured from two piping flanges welded to form the 

working space of the engine. Two caps enclose the volume, with the upper cap mounting the 

power piston, the displacer piston rod, and supporting the engine drive mechanism frame. 

The heat exchangers of are formed from two identical banks of finned tube mounted in the 

annular gap between the displacer piston cylinder and the outer engine body. A regenerator 

is present and takes the form of series of thin rectangular channels which are 3D printed in 

ABS plastic. The displacer piston is constructed from rigid closed cell polystyrene foam to 

minimize reciprocating mass. A novel element of the engine is the use of a reinforced 
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elastomeric pleated bellow for the engine power piston which was included to reduce friction 

present in more conventional sliding seal piston cylinder sets. The basic engine specifications 

are presented in Table 1. 

Table 1. EP1-M engine specifications. 

Engine Property Value Units 

Working Fluid Air - 

Engine Charge / Buffer Pressure Atmospheric kPa 

Displacer Swept Volume 5.69 L 

Power Piston Swept Volume 1.78 L 

Dead Volume 3.42 L 

   Dead Volume Ratio 0.60 - 

   Compression Ratio 1.2 - 

Piston Phasing 90 ° 

 

 
Figure 5. Partial section view of the EP1 – M low temperature difference gamma Stirling engine. 
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To accommodate the use of non-circular gears the original slider-crank drive mechanism 

of the EP1 was removed and replaced with a new mechanism as shown in Figure 5. The new 

mechanism features independent slider-crank mechanisms for each piston that is driven by a 

set of interchangeable gears. The engine flywheel was also enlarged to minimize output shaft 

velocity fluctuations to best achieve the desired velocity fluctuations in the piston cranks. 

Power take off of the engine is provided by a friction brake system. The drum of the brake is 

draped with a strap that can be progressively weighted to change the load applied to the 

engine. 

4.2 Engine Instrumentation and Data Collection 

An instrumented test rig is coupled to the engine which supplies the thermal energy to run 

the engine while also allowing monitoring and recording of the engine performance while in 

operation [14]. Figure 6 depicts the instrumentation and support layout of the test rig used 

on the EP1-M. The thermal source of the engine is hot water supplied from a hot water bath 

while the thermal sink of the engine is chilled water supplied from a cold water bath. Both 

thermal loops are controlled by a multi-head programmable peristaltic pump that circulates 

the thermal fluid directly in the engine heat exchangers. For all trails of the engine the 

operating parameters of the thermal loop were held constant at the conditions shown in Table 

2.  

Engine data was recorded from a suite of instruments mounted to the EP1-M to measure 

its performance in the layout shown in Figure 6. Direct measurements of the following 

parameters could be monitored live and were recorded during trials:  

- Output shaft position 

- Gauge pressure of the expansion space 

- Torque output of the engine output shaft 

- Working fluid temperatures at the heat exchanger exits 

- Thermal source and sink loop temperatures at the exchanger ports 

- Time 

For each trial set the engine was run from unloaded free running state up to stall point 

and back down to unloaded free running by adding and removing fixed increments of mass 

to the friction brake strap. The engine was given time to reach steady state operation at the 

load prior to collecting data. For each data set the atmospheric buffer pressure conditions 

were measured and all instruments were recorded for 20s. Two back-to-back runs from 

unloaded to stall, back down to unloaded were conducted for each trial gear configuration, 

with data recorded each loading point on the runs. Transient engine running data between 

loading applications was not recorded.  

Table 2. Test Conditions. 

Property Value Units 

Thermal Source Fluid Water - 

   Source Temperature 92.6 ± 0.4 °C 

   Source Supply Rate 1.94 ± 0.01 kg/min 

Thermal Sink Fluid Water - 

   Sink Temperature 4.7 ± 0.4 °C 

   Sink Supply Rate 1.75 ± 0.01 kg/min 

Brake Loading Increment 71 g 
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Figure 6. Engine instrumentation and support test rig diagram. 

4.3 Trial Configurations 

To test the full range of motion modifications with the two non-circular gear sets a total of 

11 trials were conducted. The first trial served to set a baseline from which to compare the 

performance of the modified motion profiles. The baseline trials use a sets of conventional 

round gears e = 0 for both the displacer and power piston and is equivalent to the piston 

motion of a conventional kinematic engine drive mechanism, but includes any system friction 

from having the gears present. Following establishment of the baseline both the power piston 

and displacer piston gear pairs were changed out in combinations. The final trial run was a 

further conventional baseline run to verify that engine performance had not drifted over the 

course of testing. The trial gearing configurations tested are detailed in Table 3, with trials 

numbered by their sequential chronological order.  

Table 3. Trial Configurations. 

Trial Group Trial No. PP Gear DP Gear 

Baseline 1 e = 0 e = 0 

 11 e = 0 e = 0 

Displacer Piston Dwell 2 e = 0 e = 1/5 

 10 e = 0 e = 1/3 

Power Piston Dwell 6 e = 1/5 e = 0 

 7 e = 1/3 e = 0 

Displacer and Power Piston Dwell 5 e = 1/5 e = 1/5 

 9 e = 1/3 e = 1/3 

Triangle Disp.*  and Power Piston Dwell 3 e = 0 e = 1/5* 

 4 e = 1/5 e = 1/5* 

 8 e = 1/3 e = 1/5* 

*Displacer gears phased 90° to crank arm to triangle profile motion  
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5 Results 

Results presented in this work focuses on the shaft power output of the engine under the trial 

configurations. Accordingly, the pressure volume indicator diagrams shown are for the 

maximum power output data point measured for each configuration. For all configurations 

this maximum power point occurred within ±1 loading increment of one another. Pressure 

results were taken directly from the collected data, while engine volume values were 

calibrated to the direct measurements of output shaft position in pre-trial calibrations. 

Discussion focuses on the achieved change in indicator diagram shape and gains made to that 

area.  

Along with the indicator diagrams, plots of the shaft power as a function of engine 

running speed are provided for the full trial set. Power is calculated via the following relation: 

 
𝑃𝑊 =  𝜏 ∙  𝜔𝑎𝑣𝑔 (4) 

where 𝑃𝑊 = Engine shaft power [W] 
 

 
𝜏 = measured output shaft torque [N·m] 

 

 𝜔𝑎𝑣𝑔 = Average output shaft angular velocity  
 

 

The average angular shaft velocity was determined from measured counts of complete 

shaft rotations divided by the measured time to complete those rotations. The power curves 

presented only show data points of the unloading runs from stall point down to free running 

for clarity.  

5.1 Displacer Piston Dwelling 

  

(a) (b) 

Figure 7. Displacer piston dwelling trials results showing the (a) P-V indicator diagrams for the 

maximum measured power sets and (b) the unloading power curves for all trials. 
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Examining the power curve in Figure 7 (a) it can be seen that the dwelling of the displacer 

piston had a substantial impact on the power performance of the engine when compared to 

the baseline trial. The maximum power produced during the baseline trial was 5.61W 

±0.10W, which reduced to 4.73W ±0.09W for the e=1/5 trail and further down to 4.07W 

±0.07W for the e=1/3 trial. Examining the data for the power curves, it is noted that for higher 

loadings, the reduction in shaft power is much lower than for light loadings that run at higher 

speed. This indicates that the reduction to power for the modified cycle is likely due to 

increased losses from flow friction in the engine cause by the much faster displacer piston 

motion caused by the non-circular gearing for equivalent output shaft speeds. Examining the 

shift of the power curves to the low speed end of the curve supports this conclusion. 

When examining the P-V indicator diagrams shown in Figure 7 (b) it can be seen that the 

dwelled displacer piston motion profile does expand the indicator diagram, particularly at the 

corners. This is anticipated as the dwelled displacer motion would prolong the duration at 

which the gas remained in the expansion and compression space prior to the power piston 

undergoing the expansion and compression processes.  

5.2 Power Piston Dwelling 

  

(a) (b) 

Figure 8. Power piston dwelling trials results showing the (a) P-V indicator diagrams for the 

maximum measured power sets and (b) the unloading power curves for all trials. 

From the power curves shown in Figure 8 (a) it can be seen that the dwelling of the power 

piston has substantially less impact on the engine performance than the displacer piston 

dwelling. When compared to the baseline maximum power measurement of 5.61W ±0.10W 

the dwelled motion with the e=1/5 gear produced a maximum measured power of 5.79W 

±0.11W, a modest increase. The trial of the e=1/3 gear produced a maximum measured 

power of 5.44W ±0.09W, a modest decrease in power when compared to the baseline case. 

Apart from the small change in maximum power measured, the power curves of the dwelled 

and baseline are largely similar. 

From Figure 8 (b) it can be seen that dwelling of the power pistons also had the effect of 

increasing the area of the P-V indicator diagram, but in a different way when compared to 

displacer piston dwelling. The area is has expanded from increased pressure swing in the 

expansion and compression portion of the cycle. This result makes sense given that dwelling 
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the power piston results in shorter expansion and compression processes which would occur 

closer to the peak pressure swings from the displacer piston position. 

5.3 Combined Piston Dwelling 

  

(a) (b) 

Figure 9. Combined displacer piston and power piston dwelling trials results showing the (a) P-V 

indicator diagrams for the maximum measured power sets and (b) the unloading power curves for 

all trials. 

The combined displacer and power piston dwelling power curves are shown in Figure 

9(a). The power curves are very similar to those shown in the dwelled displacer trials shown 

in Figure 7(a). The combined trials showed the most substantial decrease in maximum 

measured power, with the e=1/5 trial producing a maximum of 4.84W ±0.08W and the e=1/3 

trial producing the lowest recorded maximum of any trial set a 3.57 W ±0.06W. These losses 

in power are likely dominated by the same power reducing effects of the displacer dwelling 

trials. 

When examining the P-V indicator diagrams shown in Figure 9 (b) it is evident that the 

dwelling both the displacer and power piston had the anticipated effect of expanding the 

diagram closer to that of the ideal case. The curve from the e=1/3 in particular shows the 

strong pointed corners that are seen in the case of the ideal cycle.  

5.4 Power Piston Dwelling with Triangular Displacer Motion 

Results of the trials with the triangular displacer motion profile coupled with the dwelled 

power piston motion showed the most substantial performance improvements of all the tested 

configurations. From Figure 10 (a) it can be seen that the all triangle displacer motion profile 

trials had higher running speeds for light loading conditions. In the case where the displacer 

had triangular motion but the power piston was maintained near sinusoidal with e=0 gearing, 

there was a slight decrease in maximum power at a measured 5.50W ±0.12W when compared 

to the baseline maximum of 5.61W ±0.10W. When the power piston was dwelled with the 

e=1/5 gear the maximum measured power increased to 5.84W ±0.11W, the highest power 

output of all trials. For the e=1/3 trial the power also increased over the baseline to 

5.7W ±0.11W. 
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(a) (b) 

Figure 10. Trials results for the trials with triangular displacer motion profile and dwelled power 

piston motion showing the (a) PV diagrams for the maximum measured power sets and (b) the 

unloading power curves for all trials. 

The changes to the P-V indicator diagrams shown in Figure 10 (b) caused by the triangular 

displacer motion profile and the dwelled power piston is very similar to the diagrams shown 

in Figure 8 (b). This is expected as the triangle displacer motion profile’s shortening of the 

period of highest pressure at displacer top and bottom dead center is counteracted by the 

shorter expansion and compression processes of the dwelled power piston motion.  

6 Conclusions  

A low temperature difference gamma type Stirling engine was modified using non-circular 

oval elliptical gears to examine improving the thermodynamic performance and power output 

of the engine. Testing of the engine and drivetrain modifications revealed that the piston 

motion modification was able to achieve more discrete thermodynamic processes in the 

engine that approached the ideal Stirling cycle. However, any observed increases to P-V 

indicator diagram area had no substantial increases to the maximum power output of the 

engine. In the case of trials where the displacer piston was dwelled, the penalties to engine 

speed resulted in a decrease of maximum power. It is suspected that this resulted from the 

higher displacer piston velocities during the heat addition and heat rejection processes that 

were necessary to prolong the dwelling during the expansion and compression processes. In 

the worst case where both the displacer and power piston were dwelled with the e=1/3 gears 

the maximum power measured was reduced to 3.57 W ±0.06W when compared to the 

conventional motion profile baseline maximum of 5.61W ±0.10W.  

Dwelling of the power piston was more successful, both expanding the indicator diagram 

and achieving slight increases in the maximum shaft power measurements of the engine. The 

most successful trial occurred when moving the displacer piston in a triangular motion profile 

while dwelling the power piston with the e=1/5 gear, slightly increasing the maximum power 

to 5.84W ±0.11W over the baseline case of 5.61W ±0.10W.Overall the results indicate that 

deviating from the conventional, overlapping sinusoidal piston motion was possible, but it 

did not achieve substantial improvements to engine performance, and in the worst cases 

significantly decreased maximum power.  
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