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Abstract. Phasor mathematics is used to develop the isothermal Stirling 
cycle and extended to the ideal adiabatic Stirling cycle. The results are 
developed for piston – piston (alpha) machines and displacer – piston (beta 
and gamma) machines. The effect of non-ideal regeneration is handled by 
defining a regenerator effectiveness ratio. The importance of the amplitude 
pressure ratio (pressure amplitude to the mean pressure) is developed and 
shown to be a useful parameter when evaluating the effect of dead volume 
or when applying simple cycle analyses. The analysis is developed for both 
power producing and cooling engines. The utility of these analyses is 
discussed with respect to calibrated results of real machines. 

Background 
Much like the Otto and Diesel cycles are the classic cycles used to describe the spark and 

compression ignition engines, the cycle described by Schmidt in 1871[1] has become the 
classic Stirling cycle. This is more about the Schmidt analysis being mathematically tractable 
rather than its reflection of the real cycle. The major assumption of Schmidt's analysis is that 
the gas in the working spaces and attendant heat exchangers is at their respective constant 
upper and lower cycle temperatures, and that regeneration is perfect. The gas is therefore 
isothermal everywhere but with spatial temperature distribution as indicated in Fig. 1. The 
assumption of isothermal working spaces is the most limiting aspect of the analysis. Schmidt 
also assumed that the volumes of the working spaces vary sinusoidally as is shown in a 
diagram from his original analysis of Lehmann’s machine (Fig. 2). 
 

 

                       
Fig. 1. Isothermal and adiabatic assumptions 
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Fig. 2. Sinusoidal volume variations from Schmidt’s original paper 
 

In what follows, an ideal analysis will be developed using phasor notation that includes 
the effect of regeneration and adiabatic working spaces. In all other respects, the general 
assumptions are identical to those used by Schmidt. 

Analysis 
Following the method developed by Chen et al [13], we start by assuming that the 

following varying parameters are represented by first harmonics.: 
 
𝑉 = 〈𝑉〉%1 + 𝛿𝑉e!(#$%)* = 〈𝑉〉%1 + 𝛿𝑉+e!%*         working space volumes (1) 
 
𝑇 = 〈𝑇〉%1 + 𝛿𝑇e!('$%)* = 〈𝑇〉%1 + 𝛿𝑇+e!%*          working space temperatures (2)	
 
𝑚 = 〈𝑚〉%1 + 𝛿𝑚	e!(($%)* = 〈𝑚〉%1 + 𝛿𝑚/	e!%*    working space masses (3) 
 

Where subscripts c and e will indicate compression and expansion spaces respectively,	𝛿	
indicates the ratio of amplitude to mean value 〈𝑥〉. 
 

Following the Schmidt analysis, the total mass of gas in the engine is given by the sum 
of the gas masses in the various spaces 
 
𝑚) =

*
+
1∑ ,!

-!
+∑ ,!

-!./0,2,3./4,5 3	 	
 

Substituting for the varying volumes and temperatures, (1) and (2), and solving for the 
pressure gives: 
 
𝑝 = !&	#

∑ '(
)(

(*+,-,. 	%	∑
〈'(〉1234'5(6

789

〈)(〉1234)5(6789
(*:,;

	 (4)	

 
Noting that	𝛿𝑇. << 1, we use the Binomial theorem and rewrite as follows 
 
𝑝 ≈ !&	#

∑ '(
)(

(*+,-,. 	%	∑
〈'(〉
〈)(〉

&'%()*(+78,&'-(./(+78,(*:,;
	 	

 
And, ignoring second order small terms 
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𝑝 ≈ !&	#
0

'

'-2<∑
〈'(〉
〈)(〉

(*:,; ((./(-()*()+78
= !&#

0
$ '
'-(3	+7(>38)

%		 (5)	
	

where  𝑆 = ∑ 〈)(〉
〈.(〉

+∑ )(
.(678,:,;67<,= 		and	𝛿𝑝	is the pressure amplitude ratio.  

 
We now need a result that relates mt to the mean pressure 〈𝑝〉. This is done by defining 

the mean cyclic pressure (also referred to as the charge pressure) as follows: 
 
〈𝑝〉 = 6

78 ∮
9"+
:
7 6
6;<*	𝐑?@#(%&')A

8d𝜃 
  
Which, from standard integral tables [9] gives: 
 
〈𝑝〉 = 9"+

:
6

B6;<*)
 (6)

  
Substituting into (5), the pressure may now be written: 
 

𝑝 = 〈𝑝〉 B6;<*
)

6;<*C@#'
            where   𝛿𝑝̂ = 6

:
∑ 〈,!〉

〈-!〉./4,5 %𝛿𝑇+. − 𝛿𝑉F=*     (7) 
 
This has the same form as the Schmidt isothermal result except that the 𝛿𝑇s would be zero. 
 
Expanding (7) by Fourier series, gives the following result: 
 
𝑝 = 〈𝑝〉 >1 + 7

<*
%1 − ?1 − 𝛿𝑝7* cos(𝛽 + 𝜃) + 6

7
%?1 − 𝛿𝑝7	𝛿𝑝7* cos 2(𝛽 + 𝜃)G… (8) 

 
𝑝 = 〈𝑝〉[1 + 𝛿𝑝6 cos(𝛽 + 𝜃) + 𝛿𝑝7 cos 2(𝛽 + 𝜃)]…          (9) 
 
The amplitude of the first harmonic is therefore given by: 
 
𝛿𝑝6 =

7
<*
%1 − ?1 − 𝛿𝑝7* and has a phase of 𝛽. (10) 

 
For beta or gamma configurations (Fig. 3), it is convenient to express the volume 

variations in terms of the piston and displacer motions relative to the piston. 
 
𝑉4 = 〈𝑉4〉 + K(𝐴G − 𝐴+)𝑋G∠𝜙 − 𝐴*𝑋*Pej𝜃 = 〈𝑉4〉 + |𝑉4|∠𝛼4ej𝜃 = 〈𝑉4〉%1 + 𝛿𝑉+4ej𝜃* (11) 
 
𝑉5 = 〈𝑉5〉 − 𝐴G𝑋G∠𝜙	ej𝜃 = 〈𝑉5〉 + |𝑉5|∠𝛼5ej𝜃 = 〈𝑉5〉%1 + 𝛿𝑉+5ej𝜃* (12) 
 

The volume, motion and pressure phasors are shown in Fig. 4. For cooling engines, the 
pressure leads piston motions and for power engines, the pressure lags piston motions. This 
is explained in [12]. The presence of the displacer rod results in the total volume variation 
not being slightly off anti-phase to the piston motions. 
 

Taking Vc as the reference phasor, a phasor diagram for the pressures and volumes would 
look as in Fig. 5. When the total volume is maximum, the pressure would be close to 
minimum (depending on temperatures). We will proceed further assuming Vc as reference 
phasor. 

3

E3S Web of Conferences 313, 12003 (2021) https://doi.org/10.1051/e3sconf/202131312003 
19° International Stirling Engine Conference



 
 

Fig. 3. Piston and displacer motions for beta and gamma configurations 
 

 
Fig. 4. Relative phase relationships of displacements, volumes and pressure with respect to 𝑥&@ [12] 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Phasor representation of working space volumes and pressure with respect to 𝑉4=  
 

For the adiabatic case, Tc and Te are time dependent. The procedure for finding these 
expressions is outlined in Appendix A. 
 

By inspection of a simple control volume containing either the rejector or acceptor, there 
is no net enthalpy transferred across the heat exchanger / regenerator interface. The heat 
transfer must therefore equal the work in the associated working space: 
 
𝑊 = 𝑄 = ∮𝑝	d𝑉  

𝛿𝑉4=  

𝛿𝑉5=  

𝛿𝑝̂ 
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𝛿𝑉+)H)3I 
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Substitution of (7) and the derivative of V  from (1) into the above, yields: 
 
𝑊 = 𝑄 = −〈𝑝〉?1 − 𝛿𝑝7	〈𝑉〉𝛿𝑉 ∮ SMN(#$%)

6;<*𝐑?@#(%&')A
d𝜃 (13) 

 
The solution of (13) involves a certain amount of manipulation and has been solved many 

times in the literature; in approximate form [2], and exact [3, 4] and [5]. Here, the final exact 
solution is given: 
 
𝑊 = 𝑄 = 2𝜋〈𝑉〉〈𝑝〉 <,

<*
%?1 − 𝛿𝑝7 − 1* sin(𝛼 − 𝛽) = −𝜋〈𝑉〉〈𝑝〉𝛿𝑉𝛿𝑝6 sin(𝛼 − 𝛽) (14) 

 
Each working space is therefore: 
 
𝑊4 = 𝑄0 = 2𝜋〈𝑉4〉〈𝑝〉𝛿𝑉4	𝛿𝑝6 sin(−𝛽)        (𝛼 is zero here) (15) 
 
𝑊5 = 𝑄3 = 2𝜋〈𝑉5〉〈𝑝〉𝛿𝑉5	𝛿𝑝6 sin(𝛼 − 𝛽) (16) 
 
The solution to obtain the pressure is iterative and proceeds as follows: 
 

1) Assume initial values of 𝛿𝑇4	and 𝛿𝑇5 equal to zero. 
2) Solve for the pressure (7) . On first pass, this will be the Schmidt result 
3) Solve for the mass flow amplitudes and the flow reversal points, 𝜑 (A.20). 
4) Solve for the constants B1 and C2 for each space (A.28) and (A.31). 𝐶7 is almost 

equal to 𝐵6and can be assumed so for most situations. 
5) The temperature terms, 〈𝑇〉 and 𝛿𝑇 can now be found from (A.23) and (A.24) after 

evaluating the various B constants from (A.14) and (A.18). 
6) Iterate on the mean temperatures 〈𝑇4〉 and 〈𝑇5〉 back to (2) until desired tolerance 

is obtained. Convergence of better than 1% on the mean temperatures is usually 
obtained in less than eight iterations. 

7) Finally the cyclic works Wc and We are obtained from Equations (15) and (16). 
8)   Harmonics of the pressure may be obtained from the Fourier series (8). 

 
Pressure, temperature and working space mass flow profiles are shown in Figs. 6, 7 and 

8 for a representative machine. Fig. 9 shows the phasor diagram of these quantities. 
 

 
Fig. 6. Pressure Profiles for Adiabatic and Schmidt 
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Fig. 7. Temperature profiles (from Equation A.24) 
 

 
Fig. 8. Working space mass flows – positive into cavity (from Equation A.20) 
 

 
Fig. 9. Phasors relative to Vc – Mass Flow Positive into Cavity 
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Ideal Efficiency and COP 
Irreversibilities introduced by the adiabatic processes cause the performance of the cycle 

to be less than Carnot.  
 
𝜂3G =

T*$T+
U,

 (17) 
 
Substituting (15) and (16) into (17) gives: 
 
𝜂3G = 1 + 〈.+〉0.+ 123(%)

〈.*〉0.* 123(%45)
= 1 + 6

V
SMN(W)

SMN(W;#)
        where  𝜅 = |,*|

|,+|
 (18) 

 
Typically, the phases of the working space temperatures are very close to the pressure 

phase. Making this assumption on (7), 𝛿𝑝̂ may be approximated. 
 
𝛿𝑝∠𝛽 ≈ 6

:
>〈,+〉〈-+〉

(𝛿𝑇4∠𝛽 − 𝛿𝑉4∠0) +
〈,*〉
〈-*〉

(𝛿𝑇5∠𝛽 − 𝛿𝑉5∠𝛼)G (19) 
 
Solving for 𝛽 and substituting into (18), gives the following rather simple result: 
 
𝜂3G ≈ 1 − 〈-+〉

〈-*〉
 (20) 

 
Showing that the ideal adiabatic efficiency is only a function of the mean working space 

temperatures. 
 

Substituting for the 〈𝑇〉s from Equation (A.23) and ignoring second order small terms, 
the adiabatic efficiency may be represented by the following machine parameters: 
 
𝜂3G ≈ 1 − 6

Y
+ 8

7
1Z;6

Z
3 16

Y
+ 6

V
3 𝛿𝑝6 sin 𝛽     where    𝜏 ≡ 𝑇3 𝑇0⁄  (21) 

 
This result shows directly that the lower the pressure ratio the closer the efficiency will 

approach Carnot. Since the adiabatic temperature swings are a direct consequence of the 
pressure swing, this conclusion may well have been expected. Fig. 10 shows the ideal 
adiabatic efficiency versus pressure amplitude ratio for typical power engine parameters. The 
air charged machine has higher ideal performance because the adiabatic temperatures deviate 
less from the source and sink temperatures. 
 

 
Fig. 10.  Efficiency as a fraction of Carnot vs. pressure ratio (t = 3.0)  
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COP3G = >1 + SMNW
V SMN(W;#)

G
;6

 (22) 
 
COP3G =

〈-*〉
〈-+〉;〈-*〉

 (23) 

 
COP3G ≈ >6

Y
− 1 − 8

7
1Z;6

Z
3 16

Y
+ 6

V
3 𝛿𝑝6 sin 𝛽G

;6
 (24) 

 
Since heat pumps operate over a large temperature range it is instructive to see the effect 

of both temperature and pressure ratios on available COP. Fig.11 shows the fraction of 
Carnot versus temperature and pressure ratio for typical machine parameters. For near 
ambient cooling, the effect of pressure ratio is particularly important. 

 
Fig. 11.  COP as a fraction of Carnot vs. temperature and pressure amplitude ratios (g = 1.66) 

Ideal Regenerator Heat Flow 
The ideal regenerator heat flow for the Schmidt analysis was originally developed by 

Creswick [6]. From the First Law, it can be shown that the rate of heat transfer to the 
regenerator gas is equal to the change in internal energy minus the net enthalpy convected 
into the gas. 
 
d𝑄2 = 𝑉2𝑐[ d𝑝 𝑅⁄ − 𝑐*(𝑇0𝑤02 − 𝑇3𝑤23) (25) 
 
where wkr and wra are respectively the mass flows across the rejector/regenerator and 
regenerator/acceptor interfaces. By applying mass balances over the heat exchanger and 
associated working space, we have: 
 
𝑤02 = −d𝑚4 − d𝑚0 (26) 
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𝑤23 = −d𝑚5 − d𝑚3 (27) 
 

Since the adiabatic working space temperature variations are typically small with respect 
to their mean value, we will approximate the ideal gas law from (A.6) as follows: 
 
d𝑚 = 6

+	〈-〉
(𝑝	d𝑉 + 𝑉d𝑝)   where 〈𝑇〉 is the mean gas temperature. (28) 

  
Substituting (28) into the interface mass flows, (25) becomes: 
 
d𝑄2 = j Z

Z;6
〈𝑝〉 j>1,6

Z
+ 𝑉0 + 𝑉3 +

〈,+〉
Y+
+ 〈,*〉

Y*
3δ𝑝̂6 +

〈,+〉
Y+
δ𝑉+4 +

〈,*〉
Y*
δ𝑉+5G e\% + 21

〈,+〉
Y+
δ𝑉+4 +

〈,*〉
Y*
δ𝑉+53δ𝑝̂6e\7%l      where   𝜏4 = 〈𝑇4〉 𝑇0⁄   and  𝜏5 = 〈𝑇5〉 𝑇3⁄  (29) 

  
Since the second harmonics do not contribute to the net uni-directional regenerator heat flow: 
 
|𝑄2| = ∫ d𝑄2

8
] = 2 Z

Z;6
〈𝑝〉|𝑉4| n𝜗3^δ𝑝̂6 +

6
Y+
+ V

Y*
∠𝛼n      (30) 

 
where   𝜗3^ =

(,6 Z⁄ $,7$,,$〈,+〉 Y+⁄ $〈,*〉 Y*⁄ )
|,+|

   and  𝜅 = |,*|
|,+|

  
 
The heat transfer ratio is defined. 
 
|U6|!
U,!

≡ − 7
8

Z
Z;6

`a,8b*C9$(6 Y+⁄ )$(V Y*⁄ )∠#`

V	<*9 	SMN(#;W)
 (31) 

 
The regenerator effectiveness is given by [7]: 
 
𝜀 ≡ |U6|,+"

|U6|!
 (32) 

 
where i is the ideal and act is the actual unidirectional heat flow. 
 

For a machine having a non-ideal regenerator, the working gas exits the expansion-side 
of the regenerator at a different temperature than the acceptor temperature. Thus, energy 
needs to be transferred at the acceptor to maintain its temperature. The acceptor heat transfer 
is therefore 
 
𝑄3 = 𝑄3. + |𝑄2|.(1 − 𝜀)     where 𝑄3. is the ideal acceptor heat transfer. (33) 
 
The indicated efficiency and COP with regerator effectiveness are now 
 
𝜂 = d,:

6$
|<6|!
<,!

(6;e)
  (34) 

 
COP = COP3G >1 −

|U6|!
U,!

(1 − 𝜀)G (35) 
 

It is interesting to note is that (31) shows that increasing the pressure amplitude ratio will 
reduce the heat transfer ratio which reveals a contradiction for the cycle. Referring to the 
adiabatic cycle efficiency (21) or the COP (24), energy performance is optimized by reducing 
the 𝛿p term while improving regenerator performance requires just the opposite. This implies 
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an optimum pressure amplitude ratio which is clearly obvious in Figs. 12 and 13. The 
isothermal (Schmidt) results, compared here, do not show this optimum. This trend has been 
identified before by simple cycle analysis [5, 8]. 
 

  
Fig. 12.	Efficiency for Isothermal and Adiabatic Power Engine versus 𝜹𝒑	(t = 2) 
 

  
Fig. 13. COP for Isothermal and Adiabatic Cooling Engine versus 𝜹𝒑	(e	=	0.99)	
 

Fig.14 shows the engine efficiency in Fig. 10 with regenerator effectiveness of 0.95. This 
completely changes the character of the curves. No longer is the efficiency optimized for 
lower pressure ratios. Also interesting is that higher pressure amplitude ratios improve air-
charged engines more significantly than helium-charged engines. The effect of regenerator 
effectiveness on cooling engine performance is shown in Fig. 15. In this case he regenerator 
effectiveness is taken at 0.99. The consequence is quite dramatic when compared to Fig. 11. 
 

  
Fig. 14. Efficiency as a fraction of Carnot with non-ideal regeneration (t = 3.0) 
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Fig.	15.	COP as a fraction of Carnot with non-ideal regeneration (g = 1.66)	

Optimization 
Walker [2, 4] showed that it is possible to non-dimensionalize the Schmidt and adiabatic 

results by defining three independent variable groups. The groups here are slightly different 
to those used by Walker owing to the inclusion of the cooler and heater volumes. Also, the 
temperature ratio used here is the inverse of Walker's. The independent variable groups are 
therefore: 
 
t = Ta / Tk             temperature ratio (36) 
 
k = |Ve | / |Vc |       swept volume ratio           (37) 
 
r = VD / (2 |Vc | )             dead volume ratio (38) 
 
where 
 
𝑉f = 𝑉0 (𝜏 − 1) ln 𝜏⁄ + 𝑉2 + 𝑉3 (1 − 1 𝜏⁄ ) ln 𝜏⁄  (39) 
 
and is referred to as the reduced dead volume where for the purposes of optimization, the 
working space clearance volumes are taken as zero. Therefore each 𝛿𝑉 = 1. 
 
The following non-dimensional parameters result: 
 
𝑝# = *

*=>?
= 6;<*

6;<* JKS(W$%)
 pressure variation (40) 

 
𝑄0# =

U+
,"	*=>?

= − < SMNW
6$V

 reject heat (41) 
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𝑄3# =
U*

,"	*=>?
= V

6$V
𝛿 sin(𝛼 − 𝛽) acceptor heat or lift (42) 

 
𝑊# = T

,"	*=>?
= <

6$V
(𝜅 sin(𝛼 − 𝛽) − sin𝛽) work (43) 

  
where  pmax, Vt , d, 𝛿𝑝 and b are as follows: 
 

𝑝hij = 〈𝑝〉 B6;<*
)

6;<*
   maximum cyclic pressure 

 
𝑉) = 2(|𝑉4| + |𝑉5|)  sum of the swept volumes 
 
𝛿 = 𝜋 1 6

<*
− 1371 − 6

B6;<*)
8  a negative term 

 
𝛿𝑝 and b  are obtained from 
 
𝛿𝑝̂ = 6

:#
> 6
Y+
%𝛿𝑇+4 − 1* +

V
Y
6
Y*
%𝛿𝑇+5 − 1∠𝛼*G  (44) 

 
where   𝑆# = 6

Y+
+ V

Y
6
Y*
+ 2𝜌 LN Y

Y;6
  ,   𝜏4 = 〈𝑇4〉 𝑇0⁄       and       𝜏5 = 〈𝑇5〉 𝑇3⁄  

 
The 𝛿𝑇s and 〈𝑇〉s are obtained as in Appendix A. 
 

W # indicates the cyclic work for a particular engine size and maximum working gas 
pressure. The maximum working gas pressure gives an indication of the mass of the engine 
since it determines the thickness of the pressure vessel walls. Consequently, optimizing W# 
for k  and a given r and t  would give the highest cylic work for working gas volume and 
engine mass. Fig.14 and 15 show the isothermal and adiabatic results respectively. 
Regeneration is taken as perfect and for the adiabatic case, helium is assumed. The 
optimisation is not accurate for the adiabatic case when 𝛿𝑇 and 𝛿𝑝 begin to approach unity. 
The isothermal results are not affected by this because the equations are exact. Also, the 
assumption of zero clearance spaces will introduce error for the adiabatic results due to the 
linearization (A.17) which again, does not apply to the isothermal result. 

Conclusions and Observations 
Ideal analyses should provide useful insights for design. In this regard, the phasor analysis 

indicates: 
1. For adiabatic working spaces, there is a clear optimum pressure amplitude ratio where 

efficiency or COP is optimized, and this depends strongly on regenerator effectiveness. 
2. The pressure amplitude ratio is a fundamental property of the cycle and includes the 

effects of dead volume. Depending on the location on the thermal performance curve, 
increasing dead volume may reduce or improve thermal performance insofar as it alters 
the pressure amplitude ratio (Figs. 12 and 13). This has been noted by Gschwendtner 
and Bell [14]. 

3. The ideal adiabatic efficiency or COP depends, in the first order, only on the mean 
working spaces temperatures. 

4. Optimum work or lift for a given maximum pressure and volume requires somewhat 
different stroke ratios and volume phases for adiabatic and isothermal conditions. 
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Fig. 14. Isothermal (Schmidt) Optimum Parameters 
 

 

 

 

 
Fig. 15. Adiabatic Optimum Parameters (g  = 1.667) 
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5. And, finally, the phasor analysis offers a generic approach to the condition of the 
working spaces in that the isothermal result is a simple consequence of the analysis. 
 

Of course, correlation with actual engines will depend on the degree that irreversibilities 
and losses have been minimized. Table 1 lists some engines to which the analyses have been 
applied. Regenerator effectiveness and displacer drive power have been accounted for in 
each case. Calibrated results are taken from a much more extensive simulation that includes 
parasitic losses and that has been calibrated against actual data. The regenerator effectiveness 
numbers comes from the simulation and is based on a calculation of the thermal performance 
of the regenerator. All calculations are based on gas temperatures. 
 

The pressure amplitude ratio and phase tend to be better predicted by the adiabatic 
analysis versus isothermal. This is important for free-piston dymanics calculations. Energy 
transfers are quite reasonable even for the Schmidt analysis. 
 
Table 1. Results for Various Machines 

 
Machine 

 
Analysis 

 
𝛿𝑝 

𝛿𝑝 
phase 

[°] 

 
𝜺 

Displacer 
   Power 
     [W] 

  Piston 
Power 

[W] 

Lift 
or Heat In 
with 𝜺  [W] 

Efficiency 
or COP 
with 𝜺 

 
Carnot 
   [%] 

 
RE-1000 
(power) 
[10] 

Schmidt 

Adiabatic 

Calibrated 

0.111 

0.154 

0.146 

-30.75 

-29.15 

-21.30 

 

0.967 

171 

     234 

- 

    1,109 

    1,463 

    1,019 

    2,619 

        3,382 

    3,553 

       42.3 

       43.3 

    28.7 

    64.7 

    66.2 

    43.9 

 
SPIKE 
(power) 
[11] 

Schmidt 

Adiabatic 

Calibrated 

0.115 

0.132 

0.128 

-33.46 

-30.96 

-21.40 

 

0.992 

     464 

     516 

- 

 2,255 

    2,409 

1,571 

    4,619 

        5,070 

        5,578 

   48.8 

      47.5 

   28.2 

    71.2 

    69.3 

    41.2 

 
 
M150 
(cooling) 

Schmidt 
Adiabatic 

Calibrated 

0.107 
0.133 

0.137 

21.85 
23.16 

30.00 

 
0.978 

4.9 
     5.9 

- 

    -101 
    -132 

    -174 

 78 at -100°C 
   102 at -100°C 

 59 at -100°C 

    0.772 
     0.773 

    0.340 

    64.7 
    64.8 

    28.5 

 
 
M600 
(cooling) 

Schmidt 

Adiabatic 
Calibrated 

0.118 

0.143 
0.147 

18.64 

19.57 
25.80 

 

0.983 
    21.3 

    25.2 
        - 

    -407 

    -516 
    -695 

320 at -101°C 
   393 at -101°C 

275 at -101°C 

     0.787 

     0.762 
     0.396 

    71.4 

    69.1 
    35.9 

Nomenclature 

Only definitions of parameters not defined in the text are given here. 
 
cp Specific heat, constant pressure [J/kg K]  cv Specific heat, constant volume [J/kg K] 
d derivative e the natural number 
H Enthalpy [J] j √−1 
mt total system mass [kg] R gas constant [J/kg K] 
t Ta / Tk             𝜏4 〈𝑇4〉 𝑇0⁄  
𝜏5 〈𝑇5〉 𝑇3⁄  U internal energy [J] 
w mass flow [kg/s] X motion amplitude [m] 
g ratio of specific heats [-] q cycle angle [radians] 
 
Subscripts 
a acceptor k  rejector  
r regenerator 1, 2 harmonic number  
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Appendix A Working Space Temperatures 
The following is generic for either working space. Since the compression space is the 

reference phase, 𝛼 would be taken as zero for that space. 
 
Referring to Fig. A.1, the energy equation for a general  adiabatic working space is 
 
𝐻̇ − 𝑝	d𝑉 = d𝑈 (A.1) 
 

 
Fig. A.1 The Adiabatic Working Space 
 
From the definition of enthalpy: 
 
𝐻̇ = 𝑐*𝑇k𝑤 (A.2) 
 
where T’ is the temperature of the gas crossing the control volume boundary. 
 

From continuity, the mass flow rate is equal to the rate of change of mass in the working 
space: 
 
w = dm  (A.3) 
 
(A.2) therefore becomes: 
 
𝐻̇ = 𝑐*𝑇kd𝑚 (A.4) 
 
for            T’ ¬ T  for dm  ≤ 0   where T is the working space gas temperature. 
  
                  T’ ¬ 𝑇x   for dm  > 0  where 𝑇x  is the appropriate heat exchanger temperature. 
      
The internal energy is given by  𝑈 = 𝑐[	𝑇	𝑚 , thus 
 
d𝑈 = 𝑐[(𝑚	d𝑇 + 𝑇	d𝑚) (A.5) 
 
From the gas law and differentiating w.r.t. time: 
 
d𝑚 = 6

+
1*
-
d𝑉 + ,

-
d𝑝 − *	,

-)
d𝑇3 (A.6) 

 
Substituting (A.6), (A.5) and (A.4) into (A.1) noting that cp = gR /(g - 1) and  cp - cv = R,  

yields the following after simplification: 
 

.
H

Adiabatic boundary

dU

p Vd
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l-
-
= 11 − -

-k
3 l,
,
+ 11 − -

Z-k
3 l*
*

 (A.7) 
 
When the flow is out of the working space, ie, dm  ≤ 0 and T’ ¬ T, and (A.7) becomes: 
 
l-
-
= 11 − 6

Z
3 l*
*

 for d𝑚 ≤ 0 (A.8) 
 
which is easily integrated to yield 
 
𝑇 = 𝐶D𝑝(DED F⁄ ) for d𝑚 ≤ 0 (A.9) 
 
For gas flow into the working space, ie, dm > 0 and 𝑇′ ← 𝑇x,  (A.7) becomes: 
 
l-
-
= 11 − -

-m
3 l,
,
+ 11 − -

Z-m
3 l*
*

 for d𝑚 > 0 (A.10) 
 
where 𝑇x is the relevant constant heat exchanger  temperature. 
 
From (2), noting that 𝛿𝑇 < 1, (A.10) may be simplified by dropping second order small terms: 
 
l-
-
≈ 11 − 〈-〉

-m
3 l,
,
+ 11 − 〈-〉

Z-m
3 l*
*

 (A.11) 
 
which may be integrated to give 
 
𝑇 = 𝐶H𝑉(DEI)𝑝(DEI F⁄ ) for d𝑚 > 0 (A.12) 
 
where 𝜏 = 〈𝑇〉 𝑇x⁄  and C2 is the constant of integration. 
 
Equations (A.9) and (A.12) define the temperature variations in the working spaces. 
 

Taking the first harmonic pressure variation and noting that 𝛿𝑝 < 1, (A.9) may be 
simplified by applying Taylor’s expansion theorem around 𝑝 = 〈𝑝〉: 
 
𝑇 ≈ 𝐶D 41 + 71 −

D
F
9 𝛿𝑝̂D	𝑒JK −

D
HF
71 − D

F
9 𝛿𝑝̂DH	𝑒JHK +⋯>       for dm ≤ 0 (A.13)

  
where C1 is now a new constant and higher order terms have been neglected. 
 
Rewriting (A.13) for easier manipulation: 
 
𝑇 ≈ 𝐵D +𝐵H	𝛿𝑝̂D	𝑒JK −𝐵L	𝛿𝑝̂DH	𝑒JHK     for dm ≤ 0 (A.14) 
 
where 𝐵D = 𝐶D , 𝐵H = 𝐵D(1 − 1 𝛾)⁄  and  𝐵L =

D
HF
𝐵H 

  
which is the final form of the working space temperature for the part of the cycle where dm  
≤ 0. 
 
Equation (A.12) is treated a little differently. Rewriting (3.92) as the product of two functions 
 
T ( p,V ) = C2 f(V ).g( p)     for dm  > 0 (A.15) 
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Both f(V ) and g( p) are respectively non-linear functions of volume and pressure. An 
approximate method of linearizing (A.15) is to separately linearize f(V ) and g( p) and then 
neglect second order small terms from their product. 
 
Linearization of g( p) about 〈𝑝〉 is straightforward and is given by 
 
𝑔(𝑝) ≈ 〈𝑝〉(DEI F)⁄ 41 + (1 − 𝜏 𝛾)⁄ 𝛿𝑝̂D𝑒JK −

I
HF
(1 − 𝜏 𝛾)⁄ 𝛿𝑝̂DH𝑒JHK +⋯> (A.16) 

 
The variations of V are a larger fraction of the mean value. In this case additional terms 

for f(𝑉) are required from the Taylor’s series. Expanding around the mean volume, áV ñ, 
gives: 
 
f(𝑉) ≈ 〈𝑉〉DEI 41 + (1 − 𝜏)𝛿𝑉G𝑒JK − I

H
(1 − 𝜏)𝛿𝑉GH𝑒JHK + I

M
(1 − 𝜏H)𝛿𝑉GL𝑒JLK +⋯> (A.17) 

 
From (A.16) and (A.17), (A.12) now becomes 
 
𝑇(𝑝, 𝑉) ≈ 𝐶HI1 + 𝐵N𝛿𝑉G𝑒JK +𝐵M𝛿𝑝̂D𝑒JK −𝐵O𝛿𝑉G H𝑒JHK +𝐵N𝐵M𝛿𝑉G𝛿𝑝̂𝑒JHK −𝐵P𝛿𝑝̂DH𝑒JHK …K  (A.18) 
 
for dm  > 0 
 
where 𝐵N = 1 − 𝜏 , 𝐵O =

I
H
𝐵N , 𝐵M = 1 − 𝜏 𝛾⁄  , 𝐵P =

I
HF
𝐵M  and  𝐵Q =

I
M
(1 − 𝜏H)  

and products of small quantities have been neglected and C2 is now a new constant.  
 
Collecting harmonic terms: 
 
𝑇(𝑝, 𝑉) ≈ 𝐶7K1 + %𝐵n𝛿𝑉+ + 𝐵o𝛿𝑝̂6*𝑒!% + %𝐵n𝐵o𝛿𝑉+𝛿𝑝̂6 − 𝐵p𝛿𝑉+ 7 − 𝐵q𝛿𝑝̂67*𝑒!7% +⋯P    
 
for dm  > 0   (A.19) 
 

To apply the temperature profiles, dm will be needed. Using the phasor forms of the 
volumes, pressure and temperatures, (A.6) becomes: 
 
d𝑚 ≈ 𝑗𝜔 〈@〉〈R〉

B	〈T〉 I𝛿𝑉G + 𝛿𝑝̂D − 𝛿𝑇GK𝑒
JK = 𝑤 = 𝑗𝜔〈𝑚〉𝛿𝑚𝑒J(UVK) = 𝜔|𝑚|	𝑒J(UVW H⁄ VK) (A.20) 

 

 d𝑚 > 0		for	 − (𝜋 + 𝜑) < 𝜃 ≤ (−𝜑)   

 d𝑚 ≤ 0		for		(−𝜑) 	< 𝜃 ≤ (𝜋 − 𝜑) 
 
Note that the angle for the w phasor is 𝜑 + 𝜋 2⁄ . 
 

The temperatures in the working spaces for the entire cycle are required in the form given 
by (2). Using complex Fourier series, the temperatures may be written: 
 

𝑇 =	 � 𝑐r𝑒!r%
s

r/;s

	

 
where  𝑐r =

6
78 ∫ 𝑇(𝜃)𝑒;!r%d𝜃$8

;8  
 
Giving c0 for the mean value: 
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𝑐X =
(Y!VZ")

H
+ D

W
𝛿𝑝D(𝐵H −𝐵M𝐶H)𝑗𝑒J([EU) −

D
W
𝐵N𝐶H𝛿𝑉𝑗𝑒J(\EU) (A.21) 

 
And c1 for the first harmonic: 
 
𝑐D =

D
W
(𝐶H −𝐵D)𝑗𝑒JU +

D
H I(𝐵H +𝐵M𝐶H)𝛿𝑝D𝑒

J[ +𝐵N𝐶H𝛿𝑉𝑒J\K +
Y!
W [𝐵O𝛿𝑉

H𝑗𝑒J(H\EU) −
𝐵N𝐵M𝛿𝑉𝛿𝑝D𝑗𝑒J(\V[EU) +𝐵Pδ𝑝DH𝑗𝑒J(H[EU)] 
  (A.22) 
The temperature may now be written in the form of (2) for all dm with: 
 
〈𝑇〉 = 𝐑(𝑐])  
									= 𝐵D 4

D
H
− D

W
𝛿𝑝D 71 −

D
F
9 sin(𝛽 − 𝜑)> + 𝐶H 4

D
H
+ D

W
(𝐵M𝛿𝑝D sin(𝛽 − 𝜑) + 𝐵N𝛿𝑉 sin(𝛼 − 𝜑))> 

  (A.23) 
 
〈𝑇〉𝛿𝑇G = 𝐵D 4

D
H
71 − D

F
9𝛿𝑝D𝑒J[ −

D
W
𝑗𝑒JU> + 𝐶H 4

D
W
𝑗𝑒JU + D

H [𝐵N𝛿𝑉𝑒
J\ +𝐵M𝛿𝑝D𝑒J[] +

D
W [𝐵O𝛿𝑉

H𝑒J(H\) −𝐵N𝐵M𝛿𝑉𝛿𝑝D𝑒J(\V[) +𝐵Pδ𝑝DH𝑒J(H[)]𝑗𝑒EJU>  (A.24)
  

The working spaces temperatures are now fully defined except for the original constants 
of integration, 𝐵6 and 𝐶7,  which must be solved from appropriate boundary conditions. 
 
From the energy equation (A.1), and noting that the internal energy over a cycle is zero: 
 
∮ 𝐻̇d𝑡 = ∮𝑝d𝑉  
 

Which indicates that the net enthalpy flow into the working space is equal to the net pV 
work done by the piston. 
 
The enthalpy flow into the working space may be evaluated as follows: 
 
∮ 𝐻̇	d𝑡 =

4A
t
1∫ 𝑇x	𝐑(d𝑚)	d𝜃 + ∫ 𝐑(𝑇)	𝐑(d𝑚)	d𝜃8	;	(

	;	(
	;	(
;8	;	( 3 (A.25) 

 
where T is the working gas instantaneous temperature and  is the associated constant heat 
exchanger  temperature. The limits of integration occur at the zero flow points. 
 

Substituting for T for dm ≤ 0 from (A.14) and for dm from (A.20), (A.25) may be 
integrated to yield 
 
∮ 𝐻̇	d𝑡 = 	𝑐@|𝑚| 72𝑇h − 2𝐵D −

W
H
𝐵H𝛿𝑝D sin(𝜑 − 𝛽) −

H
L
𝐵L𝛿𝑝DH cos2(𝜑 − 𝛽)9  (A.26) 

 
where  |𝑚| = 〈𝑚〉𝛿𝑚  
 
The pV  work is given by (14), and combined with (10), gives 
 
𝑊 = 2𝜋〈𝑉〉〈𝑝〉 ]R

]@
7k1 − 𝛿𝑝H − 19	sin(𝛼 − 𝛽) = −𝜋〈𝑉〉〈𝑝〉𝛿𝑝D sin(𝛼 − 𝛽) (A.27)

  
Equating (A.26) and (A.27), and noting the definitions of B1 , B2 and B3 from (A.14), the 

constant B1 may be solved for: 
 

� 

T 
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𝐵D = l𝑇h − ^
H##|`|

m 41 + W
N
71 − D

F
9𝛿𝑝D sin(𝜑 − 𝛽) +

D
MF
71 − D

F
9𝛿𝑝DH cos2(𝜑 − 𝛽)>

ED
 (A.28) 

 
For the working space temperatures to be continuous, the temperatures for each direction 

of flow must be equal at 𝜃 = −𝜑  and 𝜃 = 𝜋 − 𝜑. From (A.9) and (A.12) and taking the 
average value to account for non-linearity: 
 
𝐶H_D = 𝐵D[1 + 𝛿𝑝D cos(𝛽 − 𝜑)](IED) F⁄ [1 + 𝛿𝑉 cos(𝛼 − 𝜑)](IED)   at  𝜃 = −𝜑 (A.29) 
 
𝐶H_H = 𝐵D[1 − 𝛿𝑝D cos(𝛽 − 𝜑)](IED) F⁄ [1 − 𝛿𝑉 cos(𝛼 − 𝜑)](IED)   at 𝜃 = 𝜋 − 𝜑 (A.30) 
 
𝐶H =

D
H [𝐶H_D + 𝐶H_H] ≈ 𝐵D 71 +

(IED)!

F
𝛿𝑝D𝛿𝑉 cos(𝛼 − 𝜑) cos(𝛽 − 𝜑)9 ≈ 𝐵D   (A.31) 

 
This completes the necessary equations to solve the temperature variations in the working 

spaces.  
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