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Abstract. Global increases in the occurrence and frequency of flood have highlighted the need for resilience approaches to deal 
with future floods. The principal component analysis (PCA) has been used widely to understand the resilience of the urban 
system to floods. Based on feature extraction and dimensionality reduction, the PCA reduces datasets to representations 
consisting of principal components.  Kernel PCA (KPCA) is the nonlinear form of PCA, which efficiently presents a complicated 
data in a lower dimensional space. In this work the KPCA techniques was applied to measure and map flood resilience across a 
local level. Therefore, it aims to improve the performance achieved by non-linear PCA application, compared to standard PCA. 
Twenty-one resilience indicators were gathered, including social, economic, physical, and natural components into a composite 
index (Flood resilience Index). The experimental results demonstrate the KPCA performance to get a better Flood Resilience 
Index, guiding q decision making to strengthen the flood resilience in our case of study of M’diq-Fnideq and martil municipalities 
in Northern of Morocco.   
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1 Introduction  

Achieving local and regional development goals has 
become a significant challenge for governments and 
communities worldwide [1]. As referred to the 
Intergovernmental Panel on Climate Change 
(IPCC.2012), the risks associated to global warming are 
going to increase during the future [2], [3]. These 
challenges require a concentration on strategies rising 
practitioners and researcher’s interest in investigating 
how to improve urban resilience [4].  
Urban resilience enhancement has gained a broad 
interest, as an ultimate goal of adaptation plans. In fact, 
several works have been dedicated to urban resilience 
measurement process [5], [6], [7], where composite 
indicators were often used as resilience metrics. Many 
indicators have been used to assess urban resilience 
level to a particular hazard at a local scale [8].  The 
Flood resilience Index (FRI) is a specific index used to 
assess urban resilience to floods [9]. Nevertheless, 
conclusions have highlighted that most of challenges in 
resilience assessment to data availability and quality 
constraint. Most of the time, these data were uncertain 
and heterogeneous. 
In fact, computing Flood resilience index means 
mapping some non-linear behaviour among different 
parameters (natural, social, physical, economical, 
institutional). This could be achieved using clustering 
algorithms. The classical principal component analysis 
(PCA) method was previously used to assess FRI [10].  

                                                 
* Corresponding author: narjiss.satour@gmail.com 

The main purpose of PCA is the analysis of data to 
identify patterns that reflect the data. PCA is extensively  
applied to reduce the number of indicators highly 
correlated in a multivariate dataset to a smaller set of 
intermediate indicators [11]. In other words, PCA aims 
to find the axes with maximum variances along which 
the data is most spread. However, PCA suffers from 
many issues and fails to perform well in nonlinear 
problematics compared to other clustering technique 
[12]. Kernel PCA (KPCA) is able to be more successful 
than conventional PCA, capturing the nonlinear 
correlations among data [13]. Fortunately, kernel PCA 
allows to standardise PCA to nonlinear dimensionality 
reduction [14].   
Taking into account the mentioned scope, in this paper, 
kernel PCA method was proposed to identify a better 
Flood Resilience Index for local scale. FRI was 
evaluated in three coastal municipalities in Northern 
Morocco (Fig.1).  
To achieve a comparative analysis of alternative 
nonlinear method on constructing composite indicators 
to measure the FRI, this paper is organized as follows: 
Section 2 exposes a brief presentation of the study area, 
and data used in this work. Section 3 is devoted to the 
methodology applied to assess FRI using PCA, KPCA 
and Geographic Information Systems (GIS). Section 4 
presents the results obtained, and draws the discussion 
to examine, and compare the spatial distribution of the 
Flood resilience index developed using PCA linear and 
Nonlinear PCA method (KPCA), with its own three 
varieties.  
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2 Study area and data collection 

2.1 Fnideq, M’diq and Martil municipalities   

Over a length of 44 Km extending on the coastal 
edge of Tangier-Tetouan metropolitan area in Morocco, 
Fnideq, M’diq and Martil (FMM) municipalities are 
located and localized downstream three watersheds: 
Fnideq, Smir and Martil-Alila (Fig.1). The whole area is 
ranked as the one of the northern areas at risk from 
floods. While the frequency of floods events increased 
gradually over time since 1980 [12]. Few studies have 
operationalized an urban resilience to floods [9]. 
Meanwhile, historical records show frequent flood 
concurrency from 2000 until 2010 [15], and from 2000 
to 2021 [16].  

2.2 Data Sources and Collection 

Variables section guide was used to measure 
resilience, is based on the principles of resilience 
outlined by [15] (factors shown to be linked to social, 
economic, infrastructural and ecological flood resilience 

[16]).  
 

Figure 1. Study area delimitation  

 
Data were collected at the local level from the last 

2014 Census of Morocco (RGPH, 2014) as well as 
government publications, municipal planning 
documents and an online RGPH 2014 database (Fig.2).  

Available data were used to describe the continuous 
variables for the urban resilience assessment. 
Calculation was performed using MATLAB, while 
Visualizations were done using Free and Open GIS 
Source tools. 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

             

 

 

  
 
Figure 2. Flood Resilience variables used to assess FRI 

3 Methodology: Flood Resilience 
Assessment 

3.1 Linear Principal Component Analysis (PCA) 

PCA, is a popular technique for dimensionality 
reduction and extracting structure in a higher 
dimensional space. The complexity of data in the 
original feature space can be efficiently represented in 
linear subspace of lower dimensionality using PCA, 
where the new features have the largest variance.  
 
The principal components can be understood as new 
axes of the dataset that maximize the variance along 
those axes (the eigenvectors of the covariance matrix).  
Consider a dataset { 𝑥௜ }   where i = 1, 2,….,N, and each 
𝑥௜ is a p-dimensional vector. PCA method aims to 
project the data into a q-dimensional subspace, where q 
< p. Let  𝑆௫ be the covariance matrix of { 𝑥௜ }. PCA is 
usually achieved by solving an Eigenvalue problem.  
PCA diagonalizes the covariance matrix 
 

  𝑆௫ = 
ଵ

ே
 ∑ (𝑥௜  −  𝑥̅) (𝑥௜  − 𝑥̅) ்ே

௜      (1) 

Where  𝑥̅ = 
ଵ

ே
 ∑ 𝑥௜

ே
௜ . 

Thus, the Eigenvalue equation needs to be solved: 
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λv =   𝑆௫ v, for Eigenvalue λ ≥ 0 and v ϵ 𝑅௣. Each 
Eigenvectors calculated v allows to determine the 
extracted principal components that maximize the 
variance of 𝑆௫.  

3.2 Kernel Principal Component Analysis 
(KPCA) 

3.2.1 Nonlinear dimensionality reduction  

The PCA are a linear combination of the extracted 
variables. In such cases, the data is linearly inseparable 
and linear combination does not satisfy the basic 
assumptions. For multivariate data analysis technique, a 
nonlinear is required if the task is to reduce the 
dimensionality of a dataset. 
 
The data needs to be projected into a higher dimensional 
space to deal with the linearly inseparable of the 
coordinate system in which we describe our data. The 
basic idea is to transform the data to a space where it 
becomes linearly separable.   
Assuming a nonlinear transformation ϕ called mapping 
function, from the original p-dimensional feature space 
to an d-dimensional feature space, where usually d > p.  
Each data point 𝑥௜ is projected to a point ϕ(𝑥௜) using this 
mapping function which can be written as 𝑥௜ →ϕ(𝑥௜). 
First, we make the assumption that the projected data 

have zero mean:  
ଵ

ே
 ∑ ϕ(𝑥௜)

ே
௜  = 0. 

The covariance matrix of the projected points is d*d, 

calculated by:  𝐶̅ =  
ଵ

ே
 ∑ ϕ(𝑥௜)ϕ(𝑥௜)்ே

௜ . 

We now have to find its eigenvalues λ ≥ 0 and 
eigenvectors v satisfying: λ v = 𝐶̅ v.  
By the same argument as above, it is possible to perform 
standard PCA in the new feature space.  Thus, we can 
extract the nonlinear principal components 
corresponding to ϕ, but this can be extremely costly and 
inefficient. Fortunately, we can use kernel methods to 
simplify the computation.  

3.2.2 Kernel functions  

The nonlinear method use the kernel functions map the 
data to an often higher dimensional space. This 
approach need to compute dot products mapped by phi, 
with a possibly high computational cost. In order to 
implement the kernel PCA we just need to compute dot 
products of the form ϕ(𝑥௜)

்ϕ(𝑥௝) using kernel 
representations of the form  

k(𝑥௜ , 𝑥௝) = (ϕ(𝑥௜), ϕ(𝑥௝) ) = ϕ(𝑥௜)்ϕ(𝑥௝)  (2) 
Which allow to compute the value of the dot product 
without having to perform the mapping function ϕ. 
Then, the implementation of kernel PCA dimensionality 
reduction is based on the computation of the dot product 
matrix K where  𝐾௜௝  = (k(𝑥௜ , 𝑥௝)) ௜௝. K is symmetric 
positive semi-definite. In the next, we solve the 
Eigenvalue equation by diagonalizing the kernel matrix 
K. Three commonly kernel functions are used as the 
kernel trick. 

Linear  

𝐾(𝑥ଵ, 𝑥ଶ) =   𝑥ଵ
்𝑥ଶ                                             (3) 

Polynomial 
𝐾(𝑥ଵ, 𝑥ଶ) = (   𝑥ଵ

்𝑥ଶ + 1)ఘ                                (4) 
 ρ is the order of the polynomial. 

Gaussian or Radial Basis Function (RBF) 

𝐾(𝑥ଵ, 𝑥ଶ) = 𝑒𝑥𝑝 ቀ−
‖௫భି௫మ‖²

ଶఙ²
ቁ                                 (5) 

𝜎 is the width of the kernel.  
In practice the covariance matrix based on mapping 
function    is not calculated explicitly. We can directly 
construct the kernel matrix using an a priori chosen 
kernel function k(𝑥௜, 𝑥௝) for all occurrences of 
(ϕ(𝑥௜), ϕ(𝑥௝) ). 

3.3  Calculating the flood resilience index FRI 
using PCA and KPCA 

Indicators has been mostly used as a useful tool for 
policymaking and public communication [5]. 
Nevertheless, its use to measure resilience is relatively 
new [19], less developed in developing countries. 
Among different weighting techniques used to assess 
resilience to floods this section presents the application 
of the PCA and KPCA techniques to construct the Flood 
Resilience Index (Flood Resilience Index). We describe 
also, the process to calculate the index FRI based on the 
extracted principal components.  
To measure the index FRI, the authors propose 
employing the extracted principal components to 
construct composite indices. [11] suggest using an 
intermediate resilience indicator IRI௝ that correspond to 
each principal component to FRI.   
In contrast to the standard PCA, the extraction of a 
number of kernel principal components can exceed the 
input dimensionality p and depend to the chosen kernel 
function. In practice, the proposed method does not 
yield the principal component axes, but the obtained 
eigenvectors can be understood as projections of the 
data onto the principal components.  
Unlike linear PCA method as proposed by [11], those 
eigenvectors already are the data points projected and 
can be employed directly to calculate FRI. In our case, 
the intermediate resilience indicators are given by 
eigenvectors of the centered kernel matrix that 
correspond to the largest eigenvalues. Taking into 
account these assumptions, 4 eigenvectors are retained 
to present the intermediate indicators based on the three 
standard kernel functions. Then, the index composite 
FRI can be calculated as a weighted aggregation of the 
intermediate resilience indicators: 

FRI௜= ∑ α௞IRI௞௜
௞ୀସ
௞ୀଵ  

Where 𝐅𝐑𝐈௜ is the value of the composite indicator for 
the ward i and α௝ is the weight applied to the 
intermediate resilience indicator j. These weights are 
calculated as follows: 

α௝=
௘௜௚௡௩௔௟௨௘ೕ

∑ ௘௜௚௡௩௔௟௨௘ೕ
ೕసల
ೕసభ

 

The result corresponding to the index scores shows that 
obtained values can be negative or positive. The 
normalization using min-max is used to standardize the 
index scores.  
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3.4 FRI external validation  

To identify a suitable methodology for a useful Flood 
Resilience Index development, this section undertakes 
the validation step. Based on risk and vulnerability 
works [20,21,22], phenomenon strongly related to Flood 
Resilience, and the last extreme weather events 
registered in March 2021, an external validation was 
performed to examine PCA or KPCA method’s 
accuracies. The best index to recommend is supporting 
the purpose announcing that areas with higher 
vulnerability levels examined have lower resilience 
levels [7, 24].  

4 Experimental results and analysis 

In this section FRI results were presented assessed 
through two methods: PCA and the three types of KPCA 
(Linear; Polynomial and Gaussian). GIS were used to 
map the spatial distribution of FRI assessed using PCA 
and KPCA.  

4.1.  Mapping the FRI scores with PCA 

Explaining 75% of the total variance PCA provide six 
principal components. Only only four principal 
components were retained. These components 
correspond to the eigenvalues of PCA.  The variance 
accounting for each of thes six components are 
respectively 28.11, 17.13, 12.06, 7.75, 5.46 and 5.05%. 
Fig.3 shows how a low FRI (red color) has gained a 
large flood spatial distribution.  

 
 

 
Figure 3. PCA application to assess Flood Resilience 

Index 
To better understand the comparative step, and the 
spatial distribution of FRI for 126 urban sectors, the 

standard deviation from mean (Z-scores) were 
calculated to classify the sectorial resilience levels in 
each municipality under 5 classes:  
- The sectors with a score greater than 0.55are 
considered as high resilience and visualized as dark 
green.  
- The sectors with a score between 0.53 and 0.54 are 
classified as relatively high resilience (light green). 
- Between 0.51 and 0.52 as moderate resilience 
(yellow). 
- Between 0.48 and 0.50 as relatively low resilience 
(orange).  
- The sectors with a score less than 0.47 are classified as 
low resilience (red) (Figure.3 & 4).  

4.2.  Mapping the FRI scores with KPCA 

The Kernel Principal Component Analysis (KPCA) 
has not been widely used in urban resilience assessment 
comparing to conventional PCA. KPCA was applied to 
feature extraction of flood urban resilience.  
Thus, the three commonly kernel functions were used as 
the kernel trick. The experimental results shown that the 
calculated KPCA with Gaussian or Radial Basis 
Function (Fig4. c) had better performance than the linear 
function (Fig4. a)  or the polynomial one (Fig4.b): the 
linear function and the polynomial, express a high 
resilience (Drak green) in highly vulnerable sectors 
having testified a huge damage during the last floods 
event in March 2021 (e.g South-west of Martil 
municipality) 

 
Figure 4. KPCA applications to assess FRI: a). 

Linear function; b) Polynomial function, and c) 
Gaussian function   

4.3. PCA and KPCA comparison   

Taking into account the results of the PCA and KPCA 
(linear, Gaussian, polynomial), a first statistical analysis 
was performed checking the impact of the method on the 
degree of resilience explained before.  
For this purpose, a pair comparison between PCA and 
the three-kernel type of KPCA were done using paired 
sample t-tests for equality of means (Tab.1). 
 
Table 1. t-tests for FRI between PCA and KPCA (Gaussian, 
linear, polynomial) 
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Mean 

Std 
.devia
tion 

 
t 

 
df 

 
p-

valu
e 

Pair.1 KPCA 
Gauss
-
KPCA
-linear 

.0626 .156 4.49 125 .000 

Pair 2 KPCA 
Gauss
-
KPCA
-Poly 

.0331 .155 2.39 125 .018 

Pair 3 KPCA 
Gauss
-PCA 

.0807 .260 3.47 125 .001 

Pair 4 KPCA
Linear
- 
KPCA
-Poly 

-
.0.295 

.018 -
17.5 

125 .000 

Pair 5 KPCA
Linear 
-PCA 

.0180 .222 .911 125 .364 

Pair 6 KPCA
-Poly-
PCA 

.0475 .047 2.39 125 .018 

 
Results show significant differences (p-value<0.05) 
between most of pairs of methods compared, unlike the 
pair 5 (PCA and PCA kernel linear) with (p-
value>0.05), showing no significant differences. This 
can be explained by the linear transformation of data 
using a mapping function.   
Validation step based on the overall performance 
interpretation of the four FRI developed, (PCA linear, 
KPCA (Linear, Polynomial and Gaussian)), highlight 
the performance of nonlinear PCA system using a 
Gaussian kernel to assess Flood Resilience Index. 
Therefore, it was the only index that supports the 
purpose of this study and announcing that areas with 
higher vulnerability levels examined have lower 
resilience levels.   
Furthermore, Kernel KPCA is able to capture the 
nonlinear relationship between input variables and the 
output which is FRI. Thus, Gaussian kernel PCA is more 
successful than conventional PCA. Thus, the kernel 
PCA is able to produce higher results than the linear 
PCA approach, reducing dimensional data and using a 
fewer principal component (4).   

5 . CONCLUSION  

In this paper, PCA and KPCA algorithms were used to 
evaluate Flood Resilience Index in our study area. PCA 
is a classical technique of dimensionality reduction, 
applied in many problems related to floods. The 
improved algorithm of PCA is KPCA analysis method. 
This method is performing better when it comes to a 
nonlinearly transformed feature space.   
Three kernel functions were used. Experiments were 
performed based on three municipalities. Experimental 
results show that PCA kernel achieves dimensionality 
reduction and help to get better Flood Resilience Index 

than conventional PCA.The spatial analysis highlights 
the large disparity between FRI assessed with PCA and 
KPCA. Further evaluation assessments methodologies 
will be applied to choose the most significant FRI. The 
FRI desegregation step will allow us to identify the main 
drivers of flood resilience within the study area to 
provide the local decision makers, the target to strength 
flood resilience.   
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