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Abstract. Processing of the measurements obtained by the AERONET network of the optical 

parameters characteristic of the atmospheric aerosol carried out makes it possible to compare the 
optical effects of 2020 volcanic eruptions to those results for 2019 concerning Mexico City and 
Mauna Loa site. Both the monthly spectral means of AOD and the monthly means of fine and 
coarse volume concentration show an increase for the months of January and February 2020 
(Volcanic eruption period) compared to the same period in 2019 at Mexico City. Those 
corresponding to Mauna-Loa seem not sensible with very low values. The effects of ashes of the 
two-studied volcano are very different, led to a low increase in optical depth comparatively to the 
contribution of anthropogenic aerosol at Mexico- City (low continental spread) and led to a non-
significate effect at Mauna-Loa (high marine spread).  

1 Introduction  

Volcanic eruption is one of the leading natural 
processes injecting massive ashes and gases into 
the troposphere and stratosphere [8, 18]. The 
clouds of ash and materials could affect 
neighbouring towns 45 and 60 km away, they can 
have a significant effect on the Earth's atmosphere 
and environment at several spatial and temporal 
scales [11]. The explosions with SO2 plumes can 
reach beyond the tropical tropopause into the 
stratosphere, remaining for several weeks or 
months in the upper troposphere and lower 
stratosphere [18, 21].  Sulfur dioxide that 
constitutes a significant part [17] and other volcanic 
sulfur-bearing gases transform to sulfate aerosols 
[5] that have a notable impact on the atmosphere’s 
absorption and scattering of the incoming solar 
radiation [6]. The solid emissions from a volcanic 
eruption have various sizes, from very fine particles 
(< 5 µm) to a multi-metric block, the whole being 
normed tephra. During the eruption, multiple 
plumes are injected at different altitudes and points 
in time containing SO2 and ash, making this 
eruption challenging for the modelling world [10]. 
The responses of climate also help us to 
understand important radiative and dynamical 
processes that contribute to the climate system to 
both natural and anthropogenic forcing [2].  
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This study aims to determine the last effect of 
volcanic eruptions of two important sites 
(Popocatepetl and Kilauea) on the optical 
properties of aerosols. We concentrate on aerosol 
optical depth at 0.5 µm, AOD0,5 that characterizes 
the transparency of the atmosphere and quantifies 
the extinction of the incident radiation in a column 
of atmosphere, both by diffusion and by absorption 
[3, 4]. We also analyze information on the aerosol 
load by volume particle size distributions [13, 14, 
15], based on measurements obtained by the 
AERONET network [9]. 

2 Sites and Method 

The concerned two volcanoes are considered 
among the most dangerous in the world: 
Popocatepetl was a Mexican volcano, located in 
the Centre of the country, 60 km southeast of 
Mexico City (19.33N, 99.18 W, 2268 m), and the 
last eruption in January 2020.  
Kilauea is one of five volcanoes on the island of 
Hawaii, the largest in the US state archipelago, 
near Mauna Loa (19.53 N, 155.57W, 3402 m); it is 
not a single volcano but a multitude of craters 
scattered over a vast area with the last eruption in 
December 2020.  
The AERONET network [9] is a ground-based 
remote sensing aerosol network for solar 
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photometric measurements set up by NASA to 
estimate the immediate and dissipated sun-
oriented radiation. All data are obtained using the 
CIMEL normalized sun-photometer at main 
ostensible wavelengths over the day (340, 380, 
440, 500, 675, 870, 1020 nm and 1640 nm) in 
addition to a 936 nm water vapor band).  

3 Results  

3.1 Mexico City 

The monthly spectral means of AOD show a 
normal regular variation with relatively high values 
(Figures 1), which present pronounced 
disturbances in summer 2019. Those 
corresponding to SW vary between 0.1 (winter) 
and 0.5 (spring), with an annual average greater 
than 0.3 pollution threshold recommended by the 
WHO. The AOD0,5 recorded an increase for the 
months of January and February 2020 (Volcanic 
eruption period) compared to the same period in 
2019. This increase also appears at the level of 
fines and coarse particles (Figure 3); it does not 
reflect a significant effect and remains within the 
range error interval around the annual mean. 
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Figs 1. Spectral AOD at Mexico city (2019, 2020) 
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Figs 2. Monthly average of AOD0,5 
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Fig 3. Monthly average of aerosol size distribution 

3.2 Mauna-Loa site 

The monthly spectral means of AOD show a 
normal regular variation with very low values 
(Figures 4). Those corresponding to the SW 
remain around 0.02 as an annual average. The 
AODs record an increase for the winter and spring 
2020 seasons compared to the same period in 
2019. This increase appears noticeably at the level 
of fines and large particles (Figure 6) but does not 
reflect a significant effect because all the values 
are very low. 
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Figs 4. Spectral AOD at Mauna-Loa (2019, 2020) 
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Figs 5. Monthly average of AOD0,5 
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Fig 6. Monthly average of aerosol size distribution 
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Figs 7. Daily measurements of AOD0,5 

 

4 Conclusion 

The maximum total optical depths coincide with a 
series of volcanic explosions observed in January 
in Mexico. As ash emissions moving which spread 
over large areas, it contributes to the highest 
observed volume concentration of fine and coarse 
aerosols; still it does not reflect a significant effect 
and remains within the range error interval around 
the annual mean, which is always high due to the 
sizeable anthropogenic aerosol contribution. The 
aerosol optical thickness in Mauna Loa remains 
low, even during eruption days (˂0.03) due to the 
increased spread with marine winds. 
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