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Abstract. It is accepted that digital models simplify the physical reality that is the object of the modeling. 

Hydrodynamic modeling is an approach with high uncertainties in this context. Indeed, the deterministic 

modeling approach assumes the existence of a functional relationship between the observed variables. The 

variables are observed by a series of measurements riddled with errors. Because of this, there is always a 

significant amount of uncertainty associated with a hydrogeological model. This uncertainty can be 

associated with the conceptual model or with the data and parameters associated with the different 

components of the model. Some model parameters such as hydraulic conductivity and recharge are 

particularly susceptible to uncertainty. Stochastic modeling of the hydrodynamics of a groundwater reservoir 

is an adequate response to allow us to take a step back on the significance of the results. The study is based 

on the development of a direct problem-solving model which represents the best estimate of the real 

hydrodynamic system. This model is used to make predictions. With a stochastic approach, a set of models 

is constructed where each model, as a whole, is considered to be equally likely. Each model is then used to 

make the prediction or simulate a given scenario. The MODFLOW-STOCHASTIC-GMS code allows us to 

do randomization simulations (Latin Hypercube method) and with parameter indicators.  

1 Introduction 

Latin Hypercube Sampling (LHS) is a frequently used 

sampling method in the areas of simulation experiment 

design, computational physics [1, 2], computational 

chemistry [3, 4], computational biology [5, 6], and other 

similar disciplines uncertainty analysis, adaptive 

metamodeling, reliability analysis, and probabilistic 

load flow analysis [2, 3, 7-9].  

The LHS method is preferred by many researchers when 

it comes to sensitivity analysis, for example, Helton et 

all [10] used this method to study  the propagation of 

uncertainty in analyses of complex systems, while 

Manache et all used the LHS method to sensitivity 

analysis of a water-quality model [11], This method is 

still preferred in many new researches in various fields 

[12-14]. LHS has a superior space-filling impact, 

resilience, and convergence character when compared to 

other random or stratified sampling methods.  

The goal of the LHS extension is to create a larger 

LHS while keeping the current LHS (or the original 

LHS). In at least two situations, sampling should be 

increased, especially for time-consuming simulation 

systems. Sequential sampling, adaptive metamodeling, 

and other methods are only a few examples. If the 

original LHS is subsequently shown to be too small, the 

second approach is to investigate LHS enlargement, and 

creating a new LHS with bigger sampling points without 

the original sample points would be time-intensive. 

However, due to the LHS structure, expanding the size 

of an original LHS while retaining its stratification 

features is challenging. 

One example is the integral multiple extension, in 

which the new LHS is integral times the size of the 

original sample. For stratified sampling methods, such 

as LHS, integral-multiple extension algorithms are used, 

were suggested by Tong [15]. Sallaberry et al. [16] 

proposed an LHS with correlated variables two-multiple 

extension method. Later publications titled "nested 

Latin hypercube design" [17] and "nested orthogonal 

array-based Latin hypercube design" [18] described two 

similar methods. A two-layer nested Latin hypercube 

design is a Latin hypercube design that contains a subset 

of a smaller Latin hypercube design. The K-extended 

LHS technique [19] is a particular integral-multiple 

extension method in which the new LHS includes K 

smaller LHSs. Vorechovsky [20-22] published several 

similar studies in which The new sample size is much 

larger than the old one. Using integral multiple 

extension methods allows you to get a more rigorous 

LHS while retaining all of your original sample points. 

The objective of this work is the implementation of the 

method of a method of stochastic resolution of the 

diffusivity equation based on LHS, we are interested in 

this work to simulate random fields of the parameter of 

the hydraulic conductivity and to solve for each given 

realization, the flow equation by classical methods of 

numerical resolutions (finite elements, finite 

differences, ...). 
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2 Stochastic description 

Consequently, as in many fields of Physics, we are led 

to define macroscopic quantities called local quantities 

in hydrogeology. Two approaches coexist for the 

definition of the local properties of a porous medium: 

the deterministic approach based on the theory of R.E.V. 

"Representative Elementary Volume" and the stochastic 

approach. Here we describe the first approach. This 

simply consists of defining a local (macroscopic) 

quantity using an appropriate spatial mean on a volume 

element; this local quantity being associated with the 

centroid of this elementary volume. 

The geological medium can therefore be seen as a 

continuous medium. It is implicit in this approach that 

the characteristic length of this elementary volume (𝑣) 

satisfies the inequalities: 𝑙𝑝  <<  𝑙𝑣  <<  𝑙𝑑 where 𝑙𝑑 

represent the length scale of the geological domain 

studied.  

To be more precise, let us define 𝑉 (𝑟) as the volume of 

a spatial domain included in 𝐷 (the studied geological 

domain) having for the center, the position vector 𝑟 and 

𝑢 (𝑟, 𝑡) a tensor quantity, vector or scalar in a porous 

medium. The spatial mean value of u over 𝑉 at time t is 

defined by: 

𝑢(𝑟, 𝑡, 𝑉(𝑟)) =
1

𝑉(𝑟)
∫ 𝑢 (𝑟, 𝑡) 𝑑𝑟

 

𝑉(𝑟)

 

This usually depends on the size, shape, and orientation 

of 𝑉 (𝑟) at time t. So that 𝑢 depends only on 𝑟 and 𝑡, we 

have to define a volume  𝑉0 between two spheres of 

volume, This generally depends on the size, shape, and 

orientation of 𝑉 (𝑟) at time 𝑡. So that 𝑢 depends only on 

𝑟 and 𝑡, we must define a volume 𝑉 between two spheres 

of volume 𝑉𝑚𝑖𝑛 =
𝜋

6
𝑙𝑚𝑖𝑛

3  and  𝑉𝑚𝑎𝑥 =
𝜋

6
𝑙𝑚𝑎𝑥

3 . 

𝜕𝑢(𝑟,𝑡,𝑉(𝑟))

𝜕𝑉0
= 0, and 

𝜋

6
𝑙𝑚𝑖𝑛

3 < 𝑉0 <
𝜋

6
𝑙𝑚𝑖𝑛

3  

If we can find for 𝑉0 common limits 𝑙𝑚𝑖𝑛  and  𝑙𝑚𝑎𝑥  at 

any point 𝑟 of the domain 𝐷, then can define a field 

𝑢 (𝑟, 𝑡) through 𝐷 and treat 𝐷 as a continuous medium 

for the quantity 𝑢. The volume 𝑉 is the representative 

elementary volume (R.E.V.). In the stochastic approach, 

any property of the geological medium (such as 

geometry or physical quantities) is treated as a random 

function of space. The probabilistic tool works as a great 

simplifier in the sense that the diversity of the geometry 

of a physical quantity of a porous medium is reduced to 

the knowledge of average and higher-order moments. In 

addition, the stochastic approach was able to justify the 

differences observed (for example) between the 

dispersion coefficients measured in the laboratory and 

those measured during experiments.  

De Marsily [23] uses the simple example of porosity at 

a midpoint, at the laboratory scale. This variable, noted 

n, takes the value 𝜑 =  0  when the point is located in a 

grain and 𝜑 =  1 when it is in a pore. 

FIG. 1 thus represents an embodiment 𝑖 of a random 

process (the distribution of the grains) characteristic of 

the porous medium. We suppose then that we have a 

number 𝑀 of realizations of this medium. At any point 

𝑃, we have a population of values of the variable 

porosity 𝜑 for which we can calculate the statistical 

properties: mathematical expectation, variance, 

moments of higher order. In the real case, however, we 

only have a porous medium to study, that is to say, that 

a single realization of the random processes that 

characterize it. For example, we obtain the expectation 

of the porosity at a point P defined by: 

𝜑𝑃 =
1

𝑀
∑ 𝜑𝑖

𝑃

𝑀

𝑖

 

 

Fig. 1. Example of an implementation of the "grain 

distribution" variable (high porosity with large spaces and 

small spaces). 

3 Groundwater flow equation, 
stochastic approach 

By considering the properties of the natural formation 

studied as random spatial functions associated with a 

statistical structure characterized by its moments 

(mathematical expectation, variance, and spatial 

covariance law), the stochastic approach makes it 

possible to integrate this heterogeneity into the very 

formalism of considered equations. 

The resolution of the equations thus obtained, however, 

requires the use of approximations and simplifying 

assumptions leading to analytical solutions which may 

differ from one author to another (see for example [24-

26]. Therefore, these analytical solutions apply in 

principle only to specific cases (uniform flow, infinite or 

semi-infinite medium, low heterogeneity in particular). 

Their validation, therefore, requires recourse to in situ 

experiments (for example [27]) or to numerical 

simulations [6, 28-33]. The results of these different 

works show that these solutions can be applied to cases 

where the spatial variability of 𝐾ℎ is low. Pursuing the 

goal of extending the potential field of application of the 

results from stochastic theory, some authors have 

focused on solving the flow and transport equations in 

non-uniform flow cases [32, 34]. 

We take the scale of the natural formation, which in 

most cases consists of different horizontal strata of depth 

varying from a few meters to several hundred meters. 

On this scale, the properties of the medium, as well as 

the flow variables, are magnitudes calculated or 

measured on volumes large enough to ensure that they 

are macroscopic concerning the scale of the pores. These 

properties can be considered deterministic and attached 

to each point in space. The medium and the fluid are 

assimilated to a continuous medium where one will be 

able to represent the properties and the macroscopic 

variables like vectors or continuous spatial tensors. 
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Consider a permanent flow in the absence of a 

sink/source term. The equation which governs such a 

flow is written:  

𝛻𝑞(𝑥) =  −𝛻[𝐾(𝑥)𝛻𝐻(𝑥)]  =  0 
with, H (x): the hydraulic head, K (x): is hydraulic 

conductivity, and q (x) is the well/source term. We can 

relate the flow velocity 𝑈 to the Darcy flow 𝑞 by: 

𝑈 =
𝑞

𝜑𝑒

 

𝜑𝑒 is the kinematic porosity. We consider that the flow 

problem is of direct and unconditional type, that is to 

say, that we propose to try to identify 𝐻 and 𝑈 (through 

their statistical properties). The stochastic methods of 

solving this problem are based in particular on the 

properties of the spatial distribution of hydraulic 

conductivity.  The experimental data compiled in [35] 

allowed us to deduce that the hydraulic conductivity 

𝐾 (𝑟) is highly variable and should be characterized by 

a logarithmic distribution density [36]. Freeze's analysis 

concludes that the distribution that best fitted the data 

was a lognormal distribution for K; which means. 

Y =  ln(K) 

The flow problem was stated as follows by Dagan [37]: 

“given the domain W and the properties of the medium 

in the form of random functions (eg: 𝑌), it is necessary 

to determine the random spatial function 𝐻 which 

satisfies the flow equation and the boundary conditions 

”. 

3.1 Latin Hypercube simulation 

A stratified Monte Carlo sampling technique is known 

as Latin Hypercube Sampling (LHS) (MC). The sample 

region is partitioned in a certain manner by dividing the 

range of each component of 𝑥. Only the case where the 

components of 𝑥 are independent or can be transformed 

to an independent basis will be examined. Sample 

generation for linked components with a Gaussian 

distribution is also straightforward. To generate a 

sample size 𝑁 from the 𝑥 variables  𝑥1,  𝑥2, 𝑥3, . . . . . . 𝑥4, 

LHS operates in the following manner. The range of 

each variable is partitioned into 𝑁 non-overlapping 

intervals based on equal probability size 1/𝑁. In terms 

of the probability density in the interval, one value is 

selected at random from each interval. The 𝑁 values for  

𝑥1 are then randomly matched with the 𝑁 values for  𝑥2. 

These 𝑁 pairings are combined at random with the 𝑁 

values of 𝑥3 to produce 𝑁 𝑛 −triplets, and so on, until a 

set of 𝑁 𝑛 −tuples is created. 𝑁 𝑛 − 𝑡𝑢𝑝𝑙𝑒𝑠 make up the 

Latin hypercube sample. As a consequence, for given 

values of 𝑁 and 𝑛, there are (𝑁!)𝑛1 different interval 

options for an LHS. For three normalized variables, a 

10 − 𝑟𝑢𝑛 LHS using the uniform probability density 

function (p.d.f.) is shown below (range [0,1]). In this 

case, the equal probability spaced values are 

0, . . . , 0.8, 1. Performance of the LHSMC Considers the 

case when 𝑥 is an n-vector random variable for which 

p.d.f. 𝑓𝑥(𝑥)  exists. Let ℎ denote an objective function 

that is defined like this: 

ℎ =  𝑞(𝑥) 
Consider now the following class of estimators: 

𝑇 =
1

𝑁
∑ 𝑔(𝐻𝑖)

𝑁

𝑖=1

 

𝐻𝑖 = 𝑞(x𝑖)., where 𝑔(. ) is any known function and is an 

arbitrary known function  𝑇 represents an estimate of [ℎ] 
if 𝑔(ℎ) = ℎ, i.e. if ℎ is a fixed point for 𝑔. The 𝑟th 

sample moment is obtained when 𝑔(ℎ) = 𝐻𝑖 The 

empirical distribution function of h at position c may be 

obtained by selecting 𝑔(ℎ) = 𝑢(𝑐ℎ)𝑢(. ) as a step 

function. 

The approach of the Latin Hypercube then is that the 

parameter space (all possible combinations of random 

variable values) should be sampled as completely as 

possible with a limited number of model scenarios. 

Once the segments are defined, each parameter is then 

randomly sampled until the true value is found within 

each probability segment. The random numbers for each 

parameter are combined with the random numbers for 

the other parameters, such that all possible combinations 

of the segments are sampled. The total number of runs 

of the model is the product of the number of segments 

for each parameter. 

We consider a heterogeneous aquifer characterized by 

two zones of distinct hydraulic conductivity 𝐻𝐾, If we 

decompose each zone into three segments. The total 

number of combinations would be 23 equals 8 possible 

solutions. From which we have framed the total area in 

the probability curve taking into account the specificity 

of the maximum and the minimum to have the maximum 

range of parameters while maintaining the best chance 

for the stability of the model. 

 

Fig. 2. Latin Hypercube segmentation method of Kh 

parameter according to the 𝑳𝒐𝒈 − 𝑵𝒐𝒓𝒎𝒂𝒍 law with three 

segments. (Figure a1 and Figure a2): respectively represent 

the histogram of the probability density function (PDF) and 

the cumulative distribution function (CDF). (Figure b1 and 

Figure b2): represent respectively PDF and CDF of 

𝒍𝒐𝒈 (𝒌𝒉). 

Figure 2a and figure 2b show an example of a PDF with 

parameter 𝑘ℎ according to the Log-normal law as well 

as the corresponding distribution 𝐿𝑜𝑔 (𝑘ℎ). We will 

also define in the parameterization of LHS a variation 

interval for 𝑘ℎ to keep the values in an acceptable range. 

The sampling of values of the parameter 𝑘ℎ is based on 

the results of Table 1, specifying the mean, the standard 
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deviation, and the coefficient of variation. We have 

chosen to subdivide each distinct area of hydraulic 

conductivity by three segments as mentioned in figure 

2. We then have 8 possible realizations and 

consequently 8 possible stochastic solutions for the 

problem some of which have shown a great agreement. 

at the reference hydraulic heads (Figure 3). 

 
Fig. . Illustration of four best simulations based on kh given 

by LHS 

4 Conclusion 

This work implements the stochastic model simulating 

the hydrodynamic behavior of the ground flow equation 

based on the probabilistic distributions of the 

permeability parameter. This is made possible through 

the use of the LHS method and criteria on the choice of 

the type parameter in the first place (hydraulic 

conductivity). The use of the LHS distribution model 

allowed, in the beginning, to focus on the type of model 

likely to better fit the hydrodynamic parameters 

calibrated during the direct modeling phase and most 

vulnerable to estimation uncertainties, and for guided 

towards the choice of the stochastic solution. 
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