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Abstract. We consider a model mixing sharp and diffuse interface approach for the seawater intrusion
phenomenon in confined aquifers. The aim of this work is to introduce and analyze a new mixed formulation,
obtained by writing the problem into a matrix form, and introducing a new variable representingσ = 𝑅(𝑢)∇𝑢 
the flux tensor of the primal variable . Here, h represents the depth of the salt/freshwater interface,𝑢 = (ℎ,  Φ

𝑓
)𝑇

, the hydraulic head of freshwater, and R(u) a symmetric and positive definite diffusion matrix. We show that Φ
𝑓

the continuous problem is well-posed. For the time discretization of this new mixed formulation, we use a
semi-implicit  scheme, and we show that the problem is well posed.
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1.  Introduction
In many countries and regions all over the globe,
groundwater is considered the primary source of
freshwater supply. Unfortunately, in coastal areas, a
hydraulic exchange between groundwater and seawater
may occur.

This exchange may arise for two main reasons: natural
conditions such as the decline of the water table after a dry
period or human impact such as intensive pumping. These
factors lead to a decrease in the pressure of the water table,
which, therefore, causes saltwater intrusion into coastal
aquifers. Consequently, industrial and agricultural
production may sustain significant damage. Thus, building
a model, which simulates the movement of saltwater fronts
in the coastal aquifer, is important for reasonable
groundwater development and freshwater preservation.
Within this context, several models based on numerical
methods have been proposed and evaluated in the
literature, see [1-3-6].
Considering the case of confined aquifers, we adopt a
sharp/diffuse interface approach (see Fig. 1.). The domain
is thus occupied by two immiscible fluids (freshwater and
saltwater) separated by a sharp interface. For modeling the
boundary conditions on the sharp interface, we use the
Allen-Cahn model in the fluid/fluid context. We refer to
[3], for more details on this approach .

The mathematical model associated with confined aquifers
is given by a strongly coupled set of quasi-linear
elliptic-parabolic equations. The considered unknowns are

the depth freshwater/saltwater interface and , theℎ Φ
𝑓

hydraulic head. It must be noted that the global in time
existence result is demonstrated in [4].
The use of the mixed sharp/diffuse interface approach
provides a result of solution regularity. Indeed, the gradient
of the solution is contained in the space

. This result gives the 𝐿𝑟(0, 𝑇, 𝑊1,𝑟 (Ω)),  𝑟 > 2
uniqueness of the solution; we refer to [5] for more details.
We propose, in this paper, a new mixed formulation of the
problem. A time discretization of this new mixed
formulation is based on a semi-implicit scheme. We show
that the associated problem is well posed.

Fig.1 Description of the confined aquifer with a sharp/diffuse
interface.

2. Modelling

We give, in this section, the model associated with a
sharp/diffuse interface approach in a confined aquifer.

2.1   Assumptions and notations

The assumptions and results drawn in [4-5] are adopted.

We consider a bounded open domain of describing 𝑅2

the projection of the porous medium on the horizontal

plane with a boundary of class . The time interval is 𝐶1

and we fix .[0, 𝑇],  𝑇 > 0 Ω
𝑇

= Ω ⨉ [0, 𝑇]
Moreover, we assume that the maximum principle is

always verified and the hydraulic conductivity is a𝐾
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Homothety matrix. Therefore, the problem is formulated as
follows:
ϕ∂

𝑡
ℎ + ∇. (𝐾(ℎ

2
− ℎ)∇Φ

𝑓
) − ∇. (α𝐾(ℎ

2
− ℎ)∇ℎ)

− ϕ∇. (δ∇ℎ) =− 𝑄
𝑠
      𝑖𝑛       Ω

𝑇 
  ,           (1)

− ∇. (𝐾ℎ
2
∇Φ

𝑓
) + ∇. (α𝐾(ℎ

2
− ℎ)∇ℎ)           

                     = 𝑄
𝑓

+ 𝑄
𝑠
           𝑖𝑛      Ω

𝑇  
,     (2)

   ℎ = ℎ
𝐷

,       Φ
𝑓
 = Φ

𝑓,𝐷
    𝑜𝑛     Γ×[0, 𝑇] ,           (3)

                            ℎ(𝑥, 0) = ℎ
0
(𝑥)                 𝑖𝑛    Ω    ,     (4)

where is the parameter of density contrast, theα ϕ 
porosity of the medium and represents the𝑄

𝑖
,  𝑖 = 𝑓, 𝑠

external source terms corresponding to the pumping or
recharge of fresh or saltwater into the aquifer, respectively.

The matrix form of the system (1-4) is given by:

where and is a symmetric positive𝑢 = (ℎ, Φ
𝑓
)𝑇 𝑅(𝑢) 

definite matrix.

It should be noted that the analysis of problem (5) in the
stationary case has already been done [7]. Thus, the results
will be helpful to prove those in the non-stationary case.

2.2   Mixed formulation

We consider homogeneous Dirichlet conditions,
. without loss of generality. To derive a mixed 𝑢

𝐷 
= 0

formulation of the problem (5), we define the following
spaces:

;𝑋 = [𝐻(𝑑𝑖𝑣, Ω)]2,    𝑌 = [𝐿2(Ω)]2

and

𝑊(0, 𝑇) = 𝑣 ∈ 𝐿2(0, 𝑇, 𝐻
0
1(Ω)) ;  ∂

𝑡
𝑣 ∈ 𝐿2(0, 𝑇, 𝐻−1(Ω)){ },

where

𝐻(𝑑𝑖𝑣, Ω): = 𝑤 ∈ [𝐿2(Ω)]2 ;   𝑑𝑖𝑣 𝑤 ∈ 𝐿2(Ω) { }.

The spaces and are equipped with the following𝑋 𝑌
norms:

,║τ║
𝑋

: =  (║τ║2
0,Ω 

+ ║𝑑𝑖𝑣 τ║2)1/2 

║𝑣 ║
𝑌
: =  ║𝑣 ║

0,Ω
,

where denotes the norm in , is a𝑣 | || |
0,,Ω

[𝐿2(Ω)]𝑁 𝑁
positive integer.

When , this norm is associated with the inner𝑁 = 2×2

product on [𝐿2(Ω)]2×2

(σ, τ) =
Ω
∫ σ:  τ  ,  𝑤ℎ𝑒𝑟𝑒 σ = (σ

𝑖,𝑗
),  τ = (τ

𝑖,𝑗
)   𝑎𝑛𝑑 σ: τ =

𝑖,𝑗
∑ σ

𝑖,𝑗 
τ

𝑖,𝑗
.

Introducing the new variable , we mayσ = 𝑅(𝑢)∇𝑢 
rewrite the problem (5) as follows:

similarly, for and .σ: = σ(𝑡, 𝑥) 𝑢 𝐹

Above, and throughout the paper, (.,.) means the scalar

product on is a positive integer.[𝐿2(Ω)]𝑁,  𝑁

2.3   Some auxiliary results

In this paragraph, we give beneficial results.

● is a symmetric and definite-positive𝑅(𝑢)
matrix.  We note its inverse matrix.𝑆(𝑢) 

● The matrix is a symmetric,𝑆(𝑢)
positive-definite matrix and L-Lipschitz,

‖ 𝑆 𝑢( ) − 𝑆 𝑣( ) ‖
𝐿∞

 ≤ 𝐿 ∥𝑢 − 𝑣∥ ,  
                                                            ∀ 𝑢, 𝑣 ∈𝑌.           (7)

(𝑆(𝑣) τ, τ)  ≥ 𝑐
1
 ∥ τ‖

0,Ω
2 ,   ∀ 𝑣 ∈𝑌,  τ ∈[𝐿2(Ω)]2×2,    (8)

3

E3S Web of Conferences 314, 05004 (2021) https://doi.org/10.1051/e3sconf/202131405004 
WMAD21



(𝑆(𝑣) σ, τ) ≤ 𝑐
2 

∥σ‖
0,Ω

∥ τ‖
0,Ω

,   ∀ 𝑣 ∈𝑌,  σ,  τ ∈[𝐿2(Ω)]2×2.    (

● There exists a positive constant suchβ
1 

> 0

that,

𝑆𝑢𝑝
τ∈𝑋 , τ≠ 0

 𝑑𝑖𝑣τ,𝑣( )
║τ║

0,Ω
 ≥ β

1 
║𝑣 ║

0,4,Ω
  ,   

∀ 𝑣 ∈  [𝐿4(Ω)]2 .   (10)

3. Resolution of the continuous
problem

We have

.𝑢 ∈ 𝑊(0, 𝑇) ⨉ 𝐿2(0, 𝑇, 𝐿2(Ω))  𝑎𝑛𝑑  𝐹 ∈ 𝐿2(0, 𝑇, 𝑌)

Then, using Green’s formula, we look for

𝑢(𝑡, 𝑥) ∈ 𝐸(0, 𝑇): = 𝐻1(0, 𝑇, 𝐿2(Ω)) × 𝐿2(0, 𝑇, 𝐿2(Ω))  

and

σ(𝑡, 𝑥) ∈ 𝐿2(0, 𝑇, 𝑋),

such that,

where 𝑢
0
 ∈ [𝐻

0
1(Ω)]2.

It's obvious to prove that problem (11) admits a solution
, where and is a solution of (6). For(𝑢, σ) σ = 𝑅(𝑢) ∇𝑢 𝑢

the uniqueness, we give the following result:

Theorem 1 Under the following assumptions:

● the solution of the initial problem is more regular,

in the sense that ,∇𝑢(𝑡) ∈[𝐿4(Ω)]2×2

● the initial condition and the second member𝑢
0
 𝐹

are sufficiently small.

The problem (11) admits a unique solution .(𝑢, σ)

Proof:
We assume that problem (11) admits two solutions

We put and (𝑢
1
, σ

1
) ,   (𝑢

2
, σ

2
). 𝑢  = 𝑢

1
−  𝑢

2
 

. Then we haveσ  = σ
1

−  σ
2
 

and

This implies

(𝑀 ∂
𝑡
𝑢 , 𝑣) +  (𝑑𝑖𝑣 σ, 𝑣) = 0    ∀ 𝑣 ∈ 𝑌 ,    (12)  

(𝑆(𝑢
1
) σ

1 
− 𝑆(𝑢

2
) σ

2 
,  τ) +  (𝑢 ,  𝑑𝑖𝑣 τ) =  0    ∀ τ ∈ 𝑋 .   (13) 

From (13), (7) and (9), we get

 (𝑢 ,  𝑑𝑖𝑣 τ) = (𝑆(𝑢
2
) σ

2 
− 𝑆(𝑢

1
) σ

1 
,  τ)   

   =  ((𝑆(𝑢
2
) − 𝑆(𝑢

1
) )σ

2 
,  τ ) − (𝑆(𝑢

1
) σ,  τ)

              ≤ (𝐿𝐶 ║ 𝐹
^
║ ║𝑢║

0,4,Ω
 +  𝑐

2 
 ║σ║

0,Ω
)  ║τ║

0,Ω  
,  

where ║ 𝐹
^
║ =  ║𝐹║

𝐿2(0,𝑇,𝑌)
+ ║𝑢

0
║

1,4,Ω
.

Using the Inf-Sup condition (10), we obtain

║𝑢║
0,4,Ω

≤ 
𝑐

2

β
1
−𝐿𝐶║ 𝐹

^
║

║σ║
0,Ω

.     (14)

By fixing , we take and in (12) and𝑡 ∈[0, 𝑇] 𝑣 = 𝑢 τ = σ 
(13). We have

(𝑀 ∂
𝑡
𝑢, 𝑢) +  𝑐

1 
║σ║

0,Ω
2  ≤ 𝐿𝐶   ║ 𝐹

^
║ ║𝑢║

0,4,Ω
,

then using (14) we get

.(𝑀 ∂
𝑡
𝑢, 𝑢) ≤( 

𝑐
2
𝐿𝐶 ║ 𝐹

^
║

β
1
−𝐿𝐶║ 𝐹

^
║

−  𝑐
1
)║σ║

0,Ω
2            (15) 
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Moreover, we have

,(𝑀 ∂
𝑡
𝑢, 𝑢) =  ϕ

2
𝑑

𝑑𝑡 ║ℎ(𝑡)║
0,Ω

2

where 𝑢 = (ℎ, φ
𝑓
) .  

Let's set

𝑔(𝑡) =  ϕ
2 ║ℎ(𝑡)║

0,Ω

2 ,  

then if

,  ║ 𝐹
^
║ ≤ 

β
1 

𝑐
1

𝐿𝐶(𝑐
1
+𝑐

2
)

is decreasing, therefore𝑔(𝑡) 

𝑔(𝑡) ≤𝑔(0) =  0 .

Thus,
(𝑀 ∂

𝑡
𝑢, 𝑢) = 0,

and from (14) and (15), we get

║σ║
0,Ω

= 0 ⇒σ
1 

= σ
2
 ,

║𝑢║
0,4,Ω

= 0 ⇒𝑢
1

= 𝑢
2
.

■

4. Resolution of the semi-discrete
problem

Let denote the time step size and∆𝑡: = 𝑇
𝑁 > 0

define

and the approximation of𝑡
𝑛

= 𝑛Δ𝑡,  (𝑛 = 0, 1, 2,...., 𝑁) 𝑢𝑛

at time .𝑢 𝑡
𝑛

The semi-implicit in-time mixed formulation is as follows:

Find such that and(𝑢𝑛+1, σ𝑛+1) ∈ 𝑌×𝑋,  𝑢0 = 𝑢
0

where .𝐺𝑛 = 𝐹(𝑡𝑛+1,.) +  1
Δ𝑡 𝑢𝑛

Theorem 2 A solution of exists and is unique.(𝑃)
𝑛+1

Proof:

Let us consider the problem: Find such𝑢𝑛+1 ∈[𝐻
0

1(Ω)]2

that,

Using Green Formula, we get

1
Δ𝑡 𝑀 𝑢𝑛+1, 𝑣( ) + 𝑅 𝑢𝑛( )∇𝑢𝑛+1, ∇𝑣( ) = 𝐺𝑛, 𝑣( ),

                                                                                 ∀ 𝑣∈   [𝐻
0

1(Ω)]2.          (18) 

Using Lax-Milgram, we get that problem (18) has a
unique solution. Then, by introducing

, we get the problem . Henceσ𝑛+1 = 𝑅(𝑢𝑛) ∇𝑢𝑛+1 (𝑃)
𝑛+1

the existence of a solution (𝑢𝑛+1, σ𝑛+1).  
For uniqueness, we assume that admits two(𝑃)

𝑛+1
 

solutions, and by recursion(𝑢
1

𝑛+1, σ
1

𝑛+1) , (𝑢
2

𝑛+1, σ
2

𝑛+1)

on we prove that𝑛

(𝑢
1

𝑛+1, σ
1

𝑛+1) = (𝑢
2

𝑛+1, σ
2

𝑛+1).

● For , let's prove that𝑛 = 0

(𝑢
1

1, σ
1

1) = (𝑢
2

1, σ
2

1).  

We have, for and ,𝑖 = 1, 2 𝐺0 = 𝐹(𝑡1,.) + 𝑢0

Let and , we have𝑢1 = 𝑢
1

1 − 𝑢
2

1
σ1 = σ

1
1 − σ

2
1
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we take and in (19), we get𝑣 = 𝑢1 τ = σ1 

This implies that,

𝑐
1 

║σ 1║
0,Ω

2
≤(𝑆(𝑢

0
) σ 1, σ 1) = 0,

thus,

║σ 1║
0,Ω

= 0 ⇒σ
1

1 = σ
2

1.  

As well,

(𝑢1, 𝑑𝑖𝑣 τ) = 0,  
and by using the Inf-Sup condition (10), we get

║𝑢 1║
0,4,Ω

= 0 ⇒𝑢
1

1 = 𝑢
2

1.

● Assuming that

(𝑢
1

𝑛, σ
1

𝑛) = (𝑢
2

𝑛, σ
2

𝑛),
we obtain, with the same way as

, that(𝑢
1

1, σ
1

1) = (𝑢
2

1, σ
2

1)

(𝑢
1

𝑛+1, σ
1

𝑛+1) = (𝑢
2

𝑛+1, σ
2

𝑛+1).
■

5. Results and conclusion

Using a sharp/diffuse interface approach, we propose a
new formulation of the seawater intrusion problem in
confined aquifers. The mathematical analysis of the
problem is based on the regularity of the solution,

, and the Inf-Sup condition in∇𝑢(𝑡) ∈[𝐿4(Ω)]2×2 [𝐿4(Ω)]2.

A time discretization of this new mixed formulation is
based on a semi-implicit scheme. We prove that the
associated problem is well posed.

In a future work, we will show the convergence result of
the semi-implicit scheme as well as an error estimation
result for the case of the fully discretized problem.
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