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Abstract. In the past few years, new techniques have emerged using steel plates instead of traditional 
reinforcement in the reinforced concrete beams. This study deals with using a new method for 
reinforced concrete beams using steel plates instead of traditional steel bars with different thicknesses 
of (4, 5, and 6 mm) placed vertically inside the lower part of the beam. Four reinforced concrete 
beams were cast and tested under a two-point load. All beams had the same cross-sectional area of 
reinforcement and dimensions of 2100 mm in length, 350 mm in height, and 250 in width. The results 
showed that as the thickness of the steel plate increases, the samples would have greater resistance 
until more deflection is produced. In addition, there is a reduction in the crack load, ultimate load, 
and yield load when replacing reinforcing bars with steel plates. In which, a reduction in crack load 
by about 11.1, 15.5, and 22.2% plate thicknesses of 4,5,6 mm respectively, compared to reference 
beam that had a deformed steel bar (Dia. 16 mm). In addition, a reduction in yielding load was 
observed about 42, 53, and 60% for steel plate thickness of 4, 5, and 6 mm respectively, compared to 
the reference model. Finally, the cracks for all the steel plate specimens compared to reference 
specimens were wider and smaller. 

Keywords: Flexural reinforcement; steel plates; yield load; ultimate load; crack load. 

Introduction 
Concrete beams use as a significant part of structural frames has witnessed a noticeable 

improvement in the last decades. The reinforced concrete structure consists of bundles to carry the 
horizontal loads over the openings. Indeed, very little literature has been seen to discuss the utilizing 
of steel plate as a flexural member up to date; although it has been used to strengthen the reinforced 
concrete beams, there are no attempts to use the plates as an alternative to reinforcing stirrups, and 
other used the external steel plate or internal instead of flexural reinforcement. Alfeehan [1] presents 
a practical and theoretical study on the effect of replacing internal tension reinforcement with external 
steel plates on cracking, structural deformations, and their maximum resistance, using a new 
technique by linking the internal shear steel with the outer plates.  

The results show that the use of steel sheets as an External steel reinforcement showed a restriction 
in the measured displacements at the center of the beam and an increase in the thickness of the plate 
led to an increase in the acceptability of the sill. Steel replacement ratio with 33, 67, and 100% 
yielding declination drops of 12.5, 7.7, and 4.6% respectively. Thamrin and Sari [2] presented the 
results of an experimental study on the behavior of strengthened concrete beams reinforced with steel 
plate bonded on the flexural capacity. Test results showed that steel plates bonded to the web increase 
the stiffness of the beam and the flexural capacity by values ranging from 6 to 28%.  

Mansor et al. [3,4,5] present experimental work on the behavior of bubbled wide reinforced 
concrete beams of four longitudinal plates of 3mm thickness, and the dimension was 165×1700 mm 
and included a circular opening with 146 mm diameter and 26 mm the distance between any opening 
to get the same area of equivalent stirrups. The experimental results reveal that the exterior strain of 
longitudinal and transverse plate in legs is 17 and 2%, respectively, less than strain at a yield of 
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stirrups, and the ultimate is less about 62% and 68%, respectively. Hadi et al.  [6] revealed the results 
of an experimental work of reinforced concrete beams with steel plate checker and its performance 
compared to sample reinforced with deformed steel bars. Compared to the reference sample, Samples 
reinforced with a horizontal plate showed a lot Greater ductility. Concrete models reinforced with 
vertical plate showed weak ductility, with an eventual severe reduction in ultimate load limit state. 
All plate-reinforced specimens gained access to ultimate loads ranges from 90 to 96% of theoretical 
values. 

Zuhdiy and Abbas [7] conducted the effect of corrugated steel plate strengthening on the structural 
behavior of reinforced concrete box girder using corrugated steel plates with vertical and horizontal 
corrugation and studying the effect of the shape of cells using rectangular and circular shape with the 
same web width and strengthening the circular cell with a flat plate. The experimental results showed 
that in the first group, using the vertical and horizontal corrugated steel plates strengthening increased 
the ultimate load by (7.14 and 11.03%) compared with the control box girder and decreased the crack 
width. The results also showed that in the second group, the circular and circular strengthened cells 
increased the ultimate load by (17.85 and 29.22%) compared with the control box girder with 
rectangular cell and decreased the crack width. In this research, due to the fast development of 
manufacturing by Computer Numerical Control (CNC) machine and some difficulties in longitudinal 
reinforcement stand with high cost and time entailed. Also, some efforts have been made to discover 
new techniques are adopted for longitudinal reinforced concrete beams depend on using the elongated 
steel plate as flexural reinforcement instead of deformed steel bars. The objective of the study will be 
to investigate the flexural behavior of reinforced concrete beams using longitudinal steel plates 
instead of the traditional longitudinal reinforcement with different numbers, thicknesses, and 
dimensions as an equivalent area of longitudinal reinforcement in concrete beams. 

Experimental work 

Description of beams specimens and details. Four reinforced concrete beams were cast and 
designed to fail in flexure. All specimens have the same cross-section and the amount of 
reinforcement. They had an overall length of 2100 mm, an overall depth of 350 mm, a width of 250 
mm. The reference beam specimen was reinforced with 2-Ø16 mm steel bars, and the others 
reinforced with 4, 5, and 6 mm steel plate thickness as longitudinal tension reinforcement at the 
bottom face beams. Also, to prevent shear failure of the section, 10 mm diameter stirrups at 125 mm 
c/c spacing were provided in the beams. The beam reference (A-1) details are shown in Figure 1 and 
Table 1 sums up the description names of beams specimens. 
 

 
Figure 1. Details of reference beams A-1. 
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Table 1. The description names and details of beams specimens. 
Name of Beams Main reinforcement in the tension zone Sketch 

A-1 2Ø16 in Tension zone 
 

 

APV4mm Three longitudinal steel plate of 4mm thickness 
 

 

APV5mm Three longitudinal steel plate of 5mm thickness 

 

APV6mm Three longitudinal steel plate of 6mm thickness 

 

Concrete ingredients. The commercial brand of Tasluoja, which is classified as Type I of Portland 
cement, was used in the experimental work of the current study. This cement was found to satisfy the 
ASTM C150-16 [8]. After (48 hours), the beams were covered with canvas and sprinkled 
continuously with tap water. The temperature of the water inside the curing tank is set (23°C) 
according to ASTM C192 [9] for (28 days). The specimens were white painted and marked after they 
get enough curing to allow for the observation of cracks growth through testing. Self-compacting 
concrete with compressive strength of 𝑓𝑓𝑓𝑓′=30 MPa. The natural sand that was used as fine aggregate 
and the coarse aggregate throughout the present study were brought from Al-Sudour region, Diyala 
governorate, Iraq. The coarse aggregate with (12 mm) maximum size. Both fine and coarse aggregate 
were fulfilling the ASTM C33-11 specification limits [10]. Table 2 shows the mixing proportions of 
the concrete. 

Table 2. Mix proportions. 

Material Cement 
(kg/m3) 

Coarse aggregate 
(kg/m3) 

Fine aggregate 
(kg/m3) 

Water 
(kg/m3) w/c Slump 

(mm) 

C30 490 897 700 230 47% 120mm 

Steel reinforcement and steel plates. Tensile tests of steel reinforcement were found out using three 
(450 mm) long specimens for each diameter test were performed using the available testing machine. 
According to ASTM A615/A615M-05a and ASTM A496-02, the average yield and ultimate stresses 
are listed in Table 3. Steel plates were tested in Engineering College of Baghdad University according 
to ASTM A370-05-a specification. Table 4 illustrates the result of typical testing samples 450 mm 
long.  

Table 3. Yield and ultimate stresses and elongations of steel bars used. 

Nominal bar 
diameter (mm) 

Measured 
Diameter (mm) 

Bar cross-area 
(mm2) 

Yield stress 
(MPa) 

Ultimate stress 
(MPa) 

% Elongation at 
ultimate stress 

10 10.2 78.54 610.8 725.86 11.7% 
16 15.8 201.061 528.9 642.32 13.2% 
20 19.8 314.15 442.3 699.04 15.5% 
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Table 4. Result of testing of steel plate. 

Thickness of steel 
plate (mm) 

Measured 
Thickness (mm) 

Yield stress 
(MPa) 

Ultimate stress 
(MPa) 

% Elongation at 
ultimate stress 

4 3.8 400 545.6 22.5 
5 4.8 416.5 563.21 24 
6 5.8 433.6 580 25.3 

Beam Fabrication, Test Setup, and Instrumentation 
Longitudinal bars of (2Ø16 mm) were used at the bottom of the reference beam as tension 

reinforcement. While (2Ø10 mm) longitudinal bars were at the top to hold stirrups and put in position 
for all beams with conventional design. Three specimens relate to replacing deformed steel 
reinforcement with a steel plate in a longitudinal direction. All steel plates are fixed with 
reinforcement from the bottom with four positions for each plate. Steel reinforcement for all 
specimens is shown in Figure 2. The beams were simply supported over a span of 2100 mm, and the 
loads were applied using a 600 kN hydraulic testing system (Jet Materials Ltd. Company). The 
deflected shape of the beam at the midspan and under-point load applied was measured by three dial 
gauges. 
 

 
Figure 2. Steel reinforcement and steel plate arrangement. 

Testing Procedure 
A hydraulically universal testing machine of (600 kN) capacity was used to test all beams. The 

supports and load points beams were equipped for testing by checking the positions. After setting the 
beam machine and strain gauge with a data logger, the LVDT is fixed at the middle of the upper 
surface of the specimens. Rubber pads were placed under the line loads to provide an even surface. 
The test load with two points load is shown in Figure 3. The strain gauge position was pointed in the 
middle of the two intermediate main longitudinal steel reinforcement bars. The stain gauges wires 
were connected to the data logger at the beginning of the testing day. The concrete strain was 
measured using an electrical strain gauge (PFL-30-11) with resistance 120Ω and dimensions 30 mm 
length and 10 mm width. The steel strain gauges were fixed in the middle top face of the beam 
specimens. 

 
Figure 3. Position of beams in the load-testing machine. 
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Experimental Results and Discussion 
The measurements from testing the beam specimens were used to obtain actual information that 

has been used in the analysis of the beams specimens. Their values are shown in Table 5. 
 

Table 5. Hardened properties of the four specimens. 
modulus of 

elasticity, Ec (MPa) 
fr (MPa), at 

28 days 
fct (MPa), 

cylinders 28 days 
f'c (MPa), cylinders 

28 days 
Specimen 

designation 
26779 3.908 2.958 32.460 A-1 
27229 5.435 3.306 33.564 APV4 
27234 5.557 3.306 33.578 APV5 
26497 3.849 2.941 31.784 APV6 

Aspect ratio. The aspect ratio is defined as the ratio of the steel plate width to the thickness measured 
at the bottom of the cross section. Table 6 shows the aspect ratio of specimens and explains the 
polynomial relationship for steel plate thickness. It is clear that the aspect ratio decreased from 
(APV4mm specimen) to 6mm steel plate (APV6mm). This means that the aspect ratio has undergone 
a gradual increment by the decrease of the steel plate thickness where increased. It can be concluded 
that the optimum aspect ratio is between: 
5.5< aspect ratio< 8.0                                                                                                                         (1)                                                                                                                  

Table 6. Aspect ratio for the specimen. 
Beam Specimens Width (mm) Thickness (mm) Aspect ratio 

A-1 16 16 1 
APV4mm 33.33 4 8.3325 
APV5mm 26.66 5 5.332 
APV6mm 22.2 6 3.7 

Behavior of beams subjected to loading. As stated in the third chapter, two points of load have been 
subjected to the beam. Three dial gauges were used to read the deflection, and a data logger was 
utilized to monitor the strain in concrete and steel, and the crack widths at a loading of 10 kN to 
failure of beams have been read using the micro-cracks reader. The track of the development of 
deflection, strain, and width of cracks at each level of loading have been measured directly on the 
beam to follow up the growth, sequence, and pattern of cracking [11,12]. 

Result of specimens. Table 7 tabulated the strength characteristics for total specimens (ultimate 
load, deflection, yield load at first crack, and the deflection at (yield, ultimate load). Care was taken 
to determine the load at which the first crack was formed. 

Table 7. Summary of test results for specimens. 

Failure 
mode 

Ductility 
∆𝐮𝐮
∆𝐲𝐲 

∆u 
(mm) 

∆y 
(mm) 

∆cr 
(mm) 

Pu 
(kN) 

Py 
(kN) 

1st flex. 
Cracking load 

Pcr (kN) 

Dimension of 
steel plate 

(mm  (  

Specimen 
designation 

Flexural 1.63 18.5 11.35 2.37 252.7 215 45 2Ø16 bars A-1 
Flexural 2.65 38.893 14.67 4.962 161 125 40 3(4×33.33) APV4 
Flexural 4.67 38.587 8.25 4.786 150 100 38 3(5×26.66) APV5 
Flexural 4.43 36.646 8.264 4.045 169.4 85 35 3(6×22.2) APV6 

 
The discussion of results will be concentrated on the effect of using steel plate as a substitution to 

steel bars with 4, 5, and 6 mm in the vertical and horizontal direction. The following will be discussed:  
a) Beam load carrying capacity (cracking load, yield load, and ultimate load). 
b) Deflection in mid span of specimens and ductility. 
c) Strain in longitudinal reinforcement and steel plates. 

5

E3S Web of Conferences 318, 03016 (2021) https://doi.org/10.1051/e3sconf/202131803016
ICGE 2021



d) Cracking pattern (crack width, crack spacing, and the number of cracks). 
 

Cracking load. It can be seen from Table 7 and Figure 4, the crack load decreased about 11.1, 
15.5, and 22.2% for APV4, APV5, and APV6, respectively, as compared with A-1; it indicates that 
replacing the reinforcing bars with the steel plate effects lead to reduce the ultimate load and this 
reduces crack load, this is also clear from comparison the pattern of the crack of the steel plate 
specimens and reinforced steel specimens. The cracks for all the steel plate specimens compared to 
A-1 specimens are wider and less number. This is due to the fact that dowel action, which is 
considered as one of the main factors that decrease the cracks, is lower in the steel plate than that of 
the reinforcing steel specimens due to the high bond between steel reinforcement compared to a steel 
plate, it is worth here of mentioning that the properties of the concrete are the same for all the 
specimens which will neglect the effect of other factors related to the concrete properties that may 
contribute to cracks. 

Yielding load. Table 7 and Figure 5 show the yielding load values that have been obtained from 
load-deflection figures. Where an equivalent cross-section of steel plate has been used, it can be seen 
that the yielding load decreased by about 42, 53, and 60% for APV4, APV5, and APV6, respectively, 
as compared with A-1. This decrease is due to the difference between the yielding strength of steel 
plate and reinforced steel bars, where the latter has higher-yielding strength than the former [13]. 

    

 
Figure 4. Crack load for APV4, APV5 and APV6.        

 

 
Figure 5. Yield load for APV4, APV5 and APV6. 

Ultimate load. Table 7 and Figure 6 show the ultimate load that has been resulted from load-
deflection figures. It is apparent that the ultimate load decreased by 36, 40, and 33% for APV4, APV5, 
and APV6, respectively, as compared with A-1. This decrease may be resulted from the difference 
between the ultimate load of the steel plate and reinforced steel bars, where the latter has higher-
yielding strength than the former [14]. 
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Figure 6. Ultimate load for APV4, APV5 and APV6. 

Ductility index. It is clear from Table 7 and noticed that the ductility of A-1, APV4, APV5, and 
APV6 increased by 1.63, 2.65, 4.67, and 4.43, respectively, compared with A-1. This is readily 
supporting the definition of ductility index, which is to undergo considerable deflection prior to 
failure. From the above table it is clear that the deflection prior to failure load is increased with the 
increase of the thickness of the steel plate [15]. 

Load versus deflection relationship. The values of deflection monitored at yield load and 
ultimate load that has been attained from the diagram of load-deflection are shown in Table 7. Clearly, 
as in Table 7, at yield load, the deflection has been increased in specimens when using steel plate by 
about 110, 108, and 98% for APV4, APV5 and APV6, respectively, compared with A-1. This can be 
understood since the ductility of the steel plate has been larger than that of steel reinforcement bars. 
It is also clear from Table 7 that at ultimate load, the deflection is decreased in each specimen when 
using steel plate by about 29, 27.31, and 27.18% for APV4, APV5, and APV6, respectively, as 
compared with A-1. This can be understood since the ductility of the steel plate has been larger than 
that of steel reinforcement bars. Figure 7 shows the load-deflection curves specimens. The diagram 
reveals that the load-deflection curve behaved linearly up to the point of the crack for all of the 
samples, and beyond the yield point, the curve will be controlled by the yield strength corresponding 
to each steel plate sample. Also, when the loading increased, the curve shows non-linear behavior 
since it exceeds the point load at which it yields.  

First crack width. Based on the results of tested specimens of beams at various stages of 
loading, the following conclusions can be pointed out from those figures: 

 The crack's order of formation was observed to be random due to the constant moment applied 
within the beam middle of the third region, and as the applied load increased, cracks grew 
upward accordingly. 

 Within the beam middle third area, the cracks seem to be vertical, and this can be attributed 
to the pure moment that has been applied on this segment of the beam. Outside this segment, 
the cracks became somewhat inclined, this can be attributed to the presence of shear forces 
besides the moment for beam A-1. 

 Since the highest moments is existed in the middle third of the beam, then this segment 
witnessed the first cracks. 
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Figure 7. Load versus central deflection for specimens. 

First crack width. It is clear from Table 8 that the width crack at the mid-point of the beams at 
loads corresponding to crack and yield is the maximum crack width if compared with other cracks. 
For beams with steel plates, three main cracks dominated through the test, under the load points, and 
in the middle of the beam. The failure occurs in flexure with a separation of concrete in the 
compression zone. The first crack randomly appears in the middle third of the span, which is the zone 
with the maximum moment and the widest one. Figure 8 shows the crack pattern of beams. 

Table 8. First crack width and number of cracks for Group A. 

Crack width at 
failure Measured by a 

ruler  (mm) 

1st Crack at Yield 1st Crack at Cracking Specimen 
designation Width (mm) Load (kN) Width (mm) Load (kN) 

4 2.4 215 0.03 45 A-1 
9 4 125 0.02 40 APV4 
15 0.5 100 0.02 38 APV5 
10 0.2 85 0.01 35 APV6 

Conclusion  
 It indicates that replacing the reinforcing bars with the steel plate effects reduces the ultimate 

load, which reduces crack load about 11.1, 15.5, and 22.2% for thickness 4, 5, and 6 mm, 
respectively, compared with the reference specimen. 

 Replacing the reinforcing bars with the steel plate led to reducing the yielding load of about 
42, 53, and 60% for thickness 4, 5, and 6 mm, respectively, compared with reference 
specimens. 

 When steel plate is used, the deflection at yield has been seen to increase by about 110, 108, 
and 98% for steel plate thickness 4, 5, and 6 mm, respectively, compared with reference 
specimen. In addition, the deflection at ultimate load was decreased in specimens by about 29, 
27.31, and 27.18% for thickness 4, 5, and 6 mm, respectively, as compared with the reference 
specimen. 

 With increasing the thickness of the steel plate, the measured crack load and ultimate load and 
yield load are increased. 

 The yield and ultimate load are increased by increasing the steel reinforcement's cross-
sectional areas in the beam. 

 The cracks for all the steel plate specimens compared to references specimens are wider and 
less number. 

 It concluded that replacing the reinforcing bars with the steel plate has decreased the crack 
load, ultimate load, and yield load to approximately one-third on average. 
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in the middle of the beam. The failure occurs in flexure with a separation of concrete in the 
compression zone. The first crack randomly appears in the middle third of the span, which is the zone 
with the maximum moment and the widest one. Figure 8 shows the crack pattern of beams. 

Table 8. First crack width and number of cracks for Group A. 

Crack width at 
failure Measured by a 

ruler  (mm) 

1st Crack at Yield 1st Crack at Cracking Specimen 
designation Width (mm) Load (kN) Width (mm) Load (kN) 

4 2.4 215 0.03 45 A-1 
9 4 125 0.02 40 APV4 
15 0.5 100 0.02 38 APV5 
10 0.2 85 0.01 35 APV6 

Conclusion  
 It indicates that replacing the reinforcing bars with the steel plate effects reduces the ultimate 

load, which reduces crack load about 11.1, 15.5, and 22.2% for thickness 4, 5, and 6 mm, 
respectively, compared with the reference specimen. 

 Replacing the reinforcing bars with the steel plate led to reducing the yielding load of about 
42, 53, and 60% for thickness 4, 5, and 6 mm, respectively, compared with reference 
specimens. 

 When steel plate is used, the deflection at yield has been seen to increase by about 110, 108, 
and 98% for steel plate thickness 4, 5, and 6 mm, respectively, compared with reference 
specimen. In addition, the deflection at ultimate load was decreased in specimens by about 29, 
27.31, and 27.18% for thickness 4, 5, and 6 mm, respectively, as compared with the reference 
specimen. 

 With increasing the thickness of the steel plate, the measured crack load and ultimate load and 
yield load are increased. 

 The yield and ultimate load are increased by increasing the steel reinforcement's cross-
sectional areas in the beam. 

 The cracks for all the steel plate specimens compared to references specimens are wider and 
less number. 

 It concluded that replacing the reinforcing bars with the steel plate has decreased the crack 
load, ultimate load, and yield load to approximately one-third on average. 
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a- Crack Pattern of A-1. 

 
b- Crack Pattern of APV4. 

 
c- Crack Pattern of APV5. 

 
d- Crack Pattern of APV6. 

Figure 8. Crack pattern of beam. 
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