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Abstract. Twitter is a microblogging service where users can send and read short messages of 140 characters 

called "tweets". Many healthcare-related unstructured and free-text tweets are shared on Twitter, which is 

becoming a popular domain for medical research. Sentiment analysis is one of the data mining types that 

provides an estimate of the direction of personality sentiment analysis in natural language processing. By 

analyzing text, computational linguistics is used to infer and analyze mental knowledge of the web, social 

media, and related references. The data reviewed actually quantifies the attitudes or feelings of the global 

society towards specific goods, people, or thoughts and exposes the contextual duality of the knowledge. 

Sentiment analysis is used in various sectors such as health care. There is an incredible amount of healthcare 

information available online, such as social media, and websites focused on rating medical problems, that is 

not accessed in a methodical way. Sentiment analysis has many benefits, such as using medical information 

to achieve the best possible patient outcome and improve the quality of health care. This review paper focuses 

on the presented sentiment analysis methods that are used in the medical field. 

1 Introduction  

Sentiment analysis (SA), also known as opinion 

extraction, is a branch of natural language processing 

(NLP) that classifies sentiment in free text automatically. 

Its roots may be traced back to the 1990s, with methods 

for viewpoints classification [1], prediction of adjectives 

semantic orientation [2], subjectivity classification [3], 

and so on. However, the arrival of Web 2.0 and the ever-

increasing availability of user-generated data, such as 

product and service evaluations, as well as the 

proliferation of social networking platforms, have all 

contributed to its rapid expansion. 

SA has been found to be useful in a range of societal 

settings, including industry, economy, and government 

[4-8]. 

 

This study focuses on health apps, which are defined as "a 

condition of complete mental, bodily, and social 

wholeness, rather than simply the absence of diseases or 

infirmities" [9]. Well-being is defined as a perceived or 

subjective condition, which means that it can differ 

significantly amongst individuals in otherwise similar 

circumstances [10]. 

 This fact makes well-being an optimal case study for SA. 

Regarding health issues, of course, Because of this, well-

being is an excellent case study for SA. Of course, when 

it comes to health issues, modern society is focused on 

negative occurrences like illness, damage, and incapacity 

[11], making SA difficult in this field. For example, 

having a good quality of life for a patient with a long-term 

illness will depend less on the absence of accompanying 

problems and more on how well they are controlled and 

managed.  

The unfavorable complication of health symptoms, on the 

other hand, tends to shift the SA's outcomes towards the 

poor end of the range. 

Today, both doctors and patients use online platforms 

such, social media, and websites to express their view on 

health issues [12]. Informatics is defined as "the science 

of information dissemination and transmission in an 

online medium, notably the Internet, or in a population, 

with the overriding purpose of influencing public health 

and public policy" [13]. Real-time data collection and 

processing is possible from social media such as Twitter, 

with the potential to survey public opinion (sentiment) on 

a given topic [14]. Social media has been described by 

Bates and colleagues as a "perfect storm" for patient-

focused healthcare, which provides a valuable source of 

data for the public and healthcare institutions [15]. Twitter 

is part of this, as it is easy to use, cheap, and accessible. 

There are 955 million followers on Twitter today, which 

is a mobile microblogging and social networking service. 

There are actually 955 million registered users on Twitter 

who can share post containing text, videos, photos or links 

to external sources. Fully one-third of people with social 

media profiles use Twitter, and 75% of them access it 

from a mobile device to express an opinion [16,17]. 

Sentiment analysis examines the content of natural 

language in free text, i.e., the individual words and signs 

used in a text message, to determine the intensity of 

positive and negative opinions and feelings. Sentiment 

analysis using social media is a widely studied topic 

already [18]. It is useful for corporate marketing to 
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comprehend the opinions of the public or of consumers 

about their product [19]. Computer-based software tools 

have been generated to automate the sentiment analysis 

process, quickly transforming large numbers of free-text 

reviews into quantitative sentiment scores, e.g., positive 

or negative [18]. They are usually based on text classifiers 

or machine learning based processes. They tend to be 

business oriented, expensive, and focus on capturing 

opinions about a specific chosen product or department 

[20]. During the H1N1 influenza outbreak, Chew et al 

performed a tweet content analysis [21]. In this research, 

they provided a qualitative and categorical measure of 

sentiment using content classifiers such as "humor" or 

"sarcasm." Accurately analyzing sentiment in an 

automated manner is challenging due to the subjectivity, 

flexibility, and creativity of the language used [22]. The 

purpose of this study was to examine the methods used to 

measure sentiment for Twitter-based healthcare studies. 

The first objective was to examine which methods of 

sentiment analysis were used and in what healthcare 

context. The second objective was to examine the extent 

to which the methods were practiced and validated for the 

study data, and whether a rationale for their use was 

provided. 
           Fig. 1 Facets of sentiment in medical contexts.  

2 METHODS 

Methods for determining and analyzing subjectivity, as 

well as opinions and sentiments presented in textual form, 

have been created in the field of web science and web 

browsing. This field is also known as sentiment analysis 

or opinion extraction. In medicine and health care, 

sentiment analysis is of growing interest.  

2.1 General overview 

Sentiment analysis research began in 2004 [23] with the 

investigation of customer comments and online news for 

opinions. The challenge at hand was to discern between 

positive and negative viewpoints, as well as subjective 

and objective sections of a document. Later on, additional 

tasks were added: emotion analysis determines the 

emotional category of texts [24,25], whereas intensity 

focuses on detecting the many levels of policies or 

feelings (e.g., very positive, very sad). 

However, these methods can be used to identify the 

degree of sensitivity of the text and to identify the level of 

emotion (e.g., very positive, very sad).  

 

The classification problem is addressed in existing 

sentiment analysis systems built for processing 

unstructured text in Web media: a classifier is trained to 

determine the level of polarity at the sentence or 

document level. Pang et al., for example, proposed a 

number of supervised methods, including support vector 

machines (SVM), naive Bayes classification, and 

maximum entropy [26,27]. 

 

A solution for recognizing the text semantic focus has 

been developed by Turney, who suggested an 

unsupervised approach [28]. These applications are based 

on feature sets that include semantic or lexical features.  

The main principle is that the feeling is expressed through 

opinion statements and is expressly mentioned in the text. 

Adjectives, adverbs, and particular nouns, on the other 

hand, usually indicate sentiment in free writing. 

 

Therefore, traditional sentiment analysis is based on the 

analysis and detection of these opinion words (semantic 

features). Using a lexical survey, these are then analyzed 

by sentiment analysis algorithms to find opinion terms 

and their policies in a document. 

 

 

In addition to lexicon lookup to find opinion terms, other 

features can be extracted from texts to be processed by 

sentiment analysis methods. These include lexical 

attributes such as unigrams, bigrams, and words in parts 

of speech. Sentiment analysis can be done at several 

levels, including word, aspect, phrase, and document. 

 

Pang et al [29] considered the problem at the document 

level. However, there is a great need for more detailed 

methods of sentiment analysis. Aspect-based analysis 

seeks to identify elements of a feature and attribute a 

sentiment to each one (for example, the CD is good but it 

was too valuable describes two aspects, the CD's content 

and its price) [30]. Sentiment analysis has been found to 

be Domain-dependent [31], as the polarity of certain 

phrases varies depending on the context in which they are 

employed. Therefore, the feature models on what a 

machine learning classifier relies on must be trained on 

the specific domain datasets. Lexicons must be 

appropriate for field-specific understandings of words. A 

domain neutral approach to sentiment analysis was 

introduced by Montejo-Raez et al [32]. They displayed 

each term in a tweet as a vector of factored WordNet 

words that are semantically near to the term. 

SentiWordNet [33] employed the individual weights to 

produce polarity estimate. 

 

There isn't a lot of research on analyzing feelings from a 

text-based perspective. Balahur et al. used sentiment 

analysis methodologies to filter out excellent and bad 

news information from good and poor sentiment supplied 

about a target, as well as to explicitly mark the opinions 

[34]. 
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For this special type of text that is the news article, this is 

to some extent similar to the analysis of sentiments in the 

domain of health: sentiments can be transmitted by 

medical diseases, courses of treatment or health 

conditions, and they have an effect on the patients’ health 

status and quality of life. 

 

2.2 Sentiment lexicons 
 

Many of the methods used in the sentiment analysis are 

now based on the use of sentiment vocabularies, which 

provide an excellent basis for the analysis of sentiment in 

the recognition of words and phrases in a language. They 

are an important basis for the identification of expressions 

and speech patterns of sentiment in natural language texts. 

Some examples of existing lexicons available include 

SentiWordNet (SWN) [33], WordNetAffect, General 

Inquirer1 , and the Sentiment Lexicon (SL) [35]. 

 

They both have words in them and assign sentiment 

scores or categories to them. Lexicographers can create 

lexicons by hand or by studying corpora. They frequently 

ignore the nuances and differing meanings of terminology 

when employed across domains, or they fail to provide 

explicit information about other subjects. One of the most 

widely used sentiment lexicons is SentiWordNet. 

 

It attributes to each WordNet synset three feelings scores: 

positivity, negativity, and objectivity.SentiWordNet has a 

variety of word definitions. However, it is not specified in 

which domain a phrase has a different meaning (For 

example, if right is simply a navigational term or a term 

that means "correct"). Word NetAffect [36] assigns one or 

more affective labels to a group of WordNet synsets that 

represent emotional remarks. 

 

 Mohammad and Turney [36] have built EmoLex, a 

manually created emotion lexicon using Amazon's 

Mechanical Turk service. The Lexicon of Subjectivity by 

Wilson et al [35] includes 8221 unique term expressions 

of subjectivity combined with their related polarity. In 

order to use these global feelings resources, field-specific 

vocabulary will be further developed based on the word’s 

meanings domain specificity. 

 

The most common domain words, along with their high-

level semantic linkages and event patterns, would be 

included in a multidimensional high-quality domain 

lexicon. Enhancing an existing vocabulary is the most 

direct way to cover the domain-specific environment. 

 

Combining a generic lexicon with a domain-specific 

lexicon is one way to improve the lexicon's coverage. 

While traditional methods have mostly focused on finding 

the explicit expression of sentiment, Deng et al. [37] 

provided an annotation technique that took into account 

both active beneficial and active masculine occurrences 

across opinion entities, resulting in an extension of the 

well-known Subjectivity Lexicon (MPQA) [35]. In 

particular, four types of "good for" and "bad for" (gfbf) of 

events were developed: destruction, generation, gain or 

loss, benefit or injury. Events are expressed as a text 

triplet: agent, gfbf, object, which indicated that a subject 

(noun) such as a person or organization had a good or 

adverse effect on the object (noun). 

 

The author's suggested viewpoints are listed in the figure. 

Goeuriot et al. [38] combined words from SentiWordNet 

and Subjectivity Lexicon [35], two general-purpose 

lexicons. The merged lexicons were then supplemented 

with opinion words from medical reviews. 

 

While extending, the differences in terms of polarity 

between the General and Medical fields were examined. 

The authors discovered that in pharmacological 

publications, some terms that are generally thought to be 

neutral are actually bearers of opinion. Finally, using a 

basic scoring system, it was showed that using the 

combined vocabulary yielded better results than using 

well-known broad lexicons of sentiment. Sentitivity 

Lexicon [35], General Inquirer [20], SentiWordNet, and 

Moby were used by Ohana et al [39] to assess the accuracy 

of feeling recognition. Text is from six categories of 

general domain datasets, such as hotel reviews, book 

reviews, movies and conversations, was added to the 

lexicons. The findings revealed that the level of accuracy 

of individual Lexicons varied by domain. 

 

SentiWordNet, in instance, had the best accuracy (65-

71%) in four of the six domains, while the subjective 

lexicon had the greatest performance (63-65%) in the 

remaining two. Specifically, SentiWordNet achieved the 

best accuracy (65-71%) in four of the six fields, and the 

Subjectivity Glossary performed best (63-65%) in the 

other two domains.  

SentiWordNet's extensive vocabulary coverage was one 

aspect in this. 

  
2.3. Sentiment analysis in a medical setting 
 

In terms of generic strategies for analyzing attitudes, the 

following sections go over the various approaches in 

further depth. 

In the field of medicine, sentiment analysis is 

categorized according to the textual source (e.g., medical 

web content, biomedical publications, clinical notes), the 

method (e.g., based on polarity, classification, rules, 

machine learning), and type of analysis (outcome 

classification), and level (e.g., word level, sentence 

level). The most important methods are detailed in the 

section that follows. 

2.4 Sentiment Analysis from the Medical Web 

In existing research, feeling is often considered as a 

polarity, i.e. a positive, negative or neutral polarity 

towards a given subject. Such a categorization is relevant 

when, in 

This categorization is relevant when, in texts, opinions are 

expressed about a person (e.g., a doctor), a drug, or a 

medical device. However, the sentiment may be even 

more important.  

As opposed to people or products, where feelings 

primarily include appreciation or dislike of a person or 
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good, views or feelings about medications, treatments, or 

even diagnoses 

have even more faces and are phrased in many different 

words:  

- Opinions about medical doctors, medical devices, and 

medications, 

- Personal sentiments about one's own or others' health 

conditions, 

-Complications that have occurred, 

- Facts and experiences about a particular treatment, 

diagnosis or medication.  

 

A treatment can be painful, but useful. Complications may 

have occurred, but the treatment was still successful. A 

diagnosis can be frightening, but not really serious or 

fatal. A medication can have serious side effects. How can 

we characterize feeling in medical texts? 

It is clear that sentiment or opinion in medical social 

media can be expressed differently than sentiment in news 

or product reviews. A sentiment can also be described by 

a symptom that reflects a person's health condition. It is 

not just a feeling, it is characterized by symptoms, by 

pathological terms. Since in 

social media, a mixture of facts and experiences is 

expressed, it may be necessary to distinguish factual 

information from experiences.  

 

Most sentiment analysis work in the field of medicine is 

focused on Web data such as medical blogs or discussion 

groups, with the goal of mining or studying the opinions 

of individual patients or to measure the quality of 

healthcare.  

As an example, an approach was implemented to split 

evidence-based texts from evidence-based texts [45] in 

order to evaluate the accuracy and validity of the patient 

generated content. With the assumption that content that 

is factual is actually better than affective content, as it is 

more informative (as opposed to moods and experience). 

With the concept that factual material is better than 

emotive material since it provides more information, a 

system was created to evaluate factual material in medical 

social media utilizing subjective terms and a medical 

ontology. Existing approaches to sentiment analysis from 

medical online data are typically machine learning-based 

[45] or rule-based, similar to general sentiment analysis. 

The majority of research has focused on polarity ranking: 

Xia et al. provided a multi-step technique to user opinion 

classification. 

 

Their proposed approach identifies the subject and the 

polarity being expressed towards that subject. An F-

measure of about 0.67 was also reported. For the 

classification of sentiment in tweets, Sokolova et al. used 

a variety of classifiers, including Naive Bayes, decision 

trees, and support vector machines (SVMs). The texts 

were regarded as a jumble of words. Two clustering tasks 

were considered: three classes (positive, negative, and 

neutral) and two groups (positive, negative, and neutral) 

(positive, negative). An SVM classifier had the best F-

measure of 0.69. 

The purpose of the work by Biyani et al. was to find the 

polarity of the expressed sentiments of patients in online 

health resources communities. In particular, they used the 

domain dependent and domain independent sentiments 

characteristics as the two complementary points of view 

of a message and used them for message classification in 

a semi-supervised setting using a co-training algorithm to 

complete a classification of user message sentiments in an 

online cancer support service community. 

 

This effort was later improved with features that are 

derived from a dynamic sentiment vocabulary, while the 

earlier work employed a more general sentiment lexicon 

to abstract the patterns. Smith et al. studied an additional 

perspective of the sentiment in patient feedback, namely 

speech features like expressivity and persuasiveness. A 

classifier was tested on a selected corpus of patients' 

feedback from NHS Choices. The outcomes show that the 

Naïve Bayes multinomial classification with features 

based on frequency can obtain the best accuracy 

(83.53%). In addition, the performance results 

demonstrated that a classifier model that was trained only 

on an expression corpus can be implemented directly on 

the persuasive corpus and achieve performance 

comparable to that of the corpus-based training with the 

same speech feature. 

 

3 MEDICAL SENTIMENT ANALYSIS: THE 
FUTURE 
In conclusion, the study of medical texts (medical social 

media texts, clinical accounts) with regards to the analysis 

of sentiment includes the possible need to meet the 

following research challenges: 

- Modeling the implicit clinical context and identification 

of the implicit sentiment,  

- Construction of a field-specific vocabulary of sentiment,  

- Context-specific determination of sentiment, and 

- Modeling various aspects of the condition of the patient. 

Some other aspects are the identification of the view 

carrier and the incorporation of time. 

 

An operation may start usually, but may become crucial. 

Because of this, the health feeling must also be regarded 

in time. Time is supplied by the document timestamp or 

sometimes in the documents themselves, or clinical data 

can be sorted into phases of treatment. As other research 

has already shown, negative statements are used very 

much in clinical narratives. In the sentiment analysis, it is 

very important to detect the use of negations because the 

polarity can be switched (e.g., in no complaint of pain 

when asked). 

4 CONCLUSIONS 
This article presents the various ways in which the subject 

of sentiment is used in the field of medicine and identifies 

areas for future study in the areas of medical sentiment 

analysis. While the existing work 

analysis of sentiment from medicinal texts has focused on 

medical social media and biomedical literature, future 

work should also focus on the analysis of clinical 

documents. This analysis could be used for numerous 

purposes.  

Uncertainty, attitudes, and implicit emotions might all be 

collected and used into therapeutic decision-making. The 
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development of a domain-specific sentiment lexicon and 

techniques to judging sentiment based on the nature of the 

content could be the initial steps toward solutions for 

sentiment analysis. 
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