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ABSTRACT 
Being able to predict the void fraction is essential for 

a numerical prediction of the thermohydraulic 

behaviour in steam generators. Indeed, it determines 

two-phase mixture density and affects two-phase 

mixture velocity which enable to evaluate the pressure 

drop of heat exchanger, the mass transfer and heat 

transfer coefficients. In this study, the flow is modelled 

by coupling Ansys Fluent with an in-house code 

library where a CFD porous media approach is 

implemented. In this code, the two-phase flow has 

been modelled so far using the Eulerian model. 

However, this two-phase model requires interaction 

laws between phases which are not known and/or 

reliable for a flow within a tube bundle. The aim of this 

paper is to use the mixture model, for which it is easier 

to implement suitable correlations for tube bundles. By 

expressing the relative velocity, as a function of slip, 

the void fraction model of Feenstra et al. developed for 

upward cross-flow through horizontal tube bundles is 

introduced. With this method, physical phenomena 

that occur in tube bundles are taken into consideration 

in the mixture model. The developed approach is 

validated based on the experimental results obtained 

by Dowlati et al. 

NOMENCLATURE 

�⃗� 𝑑𝑟  Drift velocity m/s 

�⃗� 𝑔𝑙  Relative velocity m/s 

�⃗� 𝑏,𝑝  
Mixture velocity between two 

tubes 
m/s 

�̇�𝑝  Mass flux between two tubes kg/(m².s) 

𝐹 𝑡  Source term  N/m3 

ΔPf
2Φ 

Two-phase frictional pressure 

drop 
Pa 

𝑆  Slip (Velocity ratio) - 

𝜏𝑔  Particle relaxation time s 

𝑓𝑑𝑟𝑎𝑔 Drag function - 

𝐶𝐷  Drag coefficient - 

𝜀  Void fraction - 

𝛼  Volume fraction - 

𝜀𝐻  Homogeneous void fraction - 

𝜆 
Two-phase multiplier 

coefficient 
- 

𝑁𝑅  Number of tube rows - 

𝑃𝑖  Pitch in the direction 𝑖 m 

𝐷𝑒𝑥𝑡  Outer diameter of a tube m 

𝑑𝑔  Gas particle diameter m 

 

INTRODUCTION  
Steam generators are heat exchangers used in 

particular in nuclear propulsion. Water, heated by the 

reactor core, flows through a tube bundle, which is a 

closed circuit called the primary circuit. The heat of 

the primary fluid is diffused by conduction through 

metallic tube walls to the water which flows outside 

of the tubes. Water in the secondary circuit, also 

called the secondary fluid, enters in a liquid state and 

becomes a two-phase mixture of steam and water as 

heat transfer occurs along the heat exchanger. The 

steam is then used to generate electricity using 

rotating turbines.  

A three-dimensional thermo-hydraulic analysis is 

essential to predict the performance of the heat 

exchanger and its correct dimensioning. However, 

modelling and simulating these heat exchangers by 

taking into account the tube bundle in detail, where 

there may be thousands of tubes, would require 

unacceptable computational cost and time. To 

decrease the computing time, the tube bundle can be 

modelled using the porous media theory.  
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Being able to predict precisely the void fraction is 

important to characterize the two-phase flow in heat 

exchangers. It is the key parameter for calculating the 

mixture density, the mixture viscosity and the mixture 

velocity. Therefore, it plays an important role for 

computing pressure drops and heat and mass transfers. 

Due to the relevance of the void fraction, many 

prediction methods have been proposed [1-2]. 

Since the 1980s, thermal-hydraulic codes have been 

developed to understand the physical phenomena 

involved. One of the first codes, THIRST [3], was 

developed to compute three-dimensional, two-phase 

and steady flow in steam generators. The two-phase 

flow was solved by the homogeneous two-phase 

model, the phase velocities were assumed to be equal 

but this does not even reflect what is really going on.  

To take into account the slip between phases, Navier-

Stokes equations were solved for the mixture of the 

secondary fluid. The THYC code [4] gives the relative 

velocity thanks to a correlation using the drift flux 

model of Zuber and Findlay [5]. This model is based 

on the determination of drift-flux parameters for which 

many different empirical correlations exist [6-10]. 

Moreover, a porous medium approach was also used 

in this development and the primary fluid was solved 

with the one-dimensional heat equation.  

The porous media concept and the two-fluid model 

were used by Stosic and Stevanovic [11] to predict the 

thermal-hydraulic behavior in horizontal tube bundles. 

Navier-Stokes equations were solved for each phase. 

The accurate definition of the interfacial drag force, 

comprising a drag coefficient correlation, is important 

in order to predict the void fraction distribution. Stosic 

and Stevanovic [11] have modified the original 

correlation of Ishii and Zuber [12] by multiplying it by 

0.4 and they validated it with their experimental data. 

Nevertheless, most of drag coefficient laws in the 

literature [13-15], including the Ishii and Zuber’s 

correlation, are made for different two-phase regime 

flows (bubbly, slug, stratified, annular or spray flow) 

in a tube and not in tube bundles.  

This problem can be tackled by using the mixture 

model, which is a simplified two-phase model where 

Navier-Stokes equations are solved for the mixture. In 

this study, the developed method involved formulating 

the relative velocity as a function of slip and 

consequently  it was possible to implement a specific 

void fraction model for tube bundles derived from the 

literature. 

Two types of flows can be found in a U-tube steam 

generator: cross flow and parallel flow. This work was 

first validated for the cross-flow configuration with the 

experimental results of Dowlati et al. [16]. Feenstra et 

al. [17] proposed a slip ratio model developed for 

two-phase cross-flow in horizontal tube bundles. 

Thus, we rewrote the slip velocity used in the mixture 

model as a function of the slip in order to implement 

this void fraction model. In addition, the bundle was 

also modelled with a porous media approach. 
 

ANALYSIS AND MODELLING 
 

In order to simulate the thermal-hydraulic behaviour 

in the tube bundle, CFD calculations were performed 

with a porous medium approach. This involves 

solving the conservation equations of mass and 

momentum and the turbulence model using the 

superficial velocity porous formulation. Moreover, 

the two-phase flow was modelled using the mixture 

model of Ansys Fluent v2019R2.  

 

Governing equations of the two-phase flow:  In 

this section, two phases are considered, the liquid 

phase 𝑙 and the gas phase 𝑔. The flow is two-

dimensional and only transverse to the tube bundle.  

 

The continuity equation for the mixture is: 
𝜕

𝜕𝑡
(𝜌𝑏) + ∇ ⋅ (𝜌𝑏�⃗� 𝑏) = 0 (1) 

where �⃗� 𝑏 is the mass-averaged velocity: 

�⃗� 𝑏 =
𝛼𝑔𝜌𝑔�⃗� 𝑔 + 𝛼𝑙𝜌𝑙�⃗� 𝑙

𝜌𝑏
 (2) 

𝛼𝑘 is the volume fraction of phase 𝑘 and 𝜌𝑏 is the 

mixture density: 

𝜌𝑏 = 𝛼𝑔𝜌𝑔 + 𝛼𝑙𝜌𝑙 (3) 

The momentum equation for the mixture is obtained 

by summing the individual momentum equations of 

all phases. It takes the following form: 
𝜕

𝜕𝑡
(𝜌𝑏�⃗� 𝑏) + ∇ ⋅ (𝜌𝑏�⃗� 𝑏�⃗� 𝑏) = 

−∇𝑝 + ∇ ⋅ [𝜇𝑏(∇�⃗� 𝑏 + ∇�⃗� 𝑏
𝑇)] + 𝜌𝑏𝑔  

(4) 

−∇ ⋅ (𝛼𝑔𝜌𝑔�⃗� 𝑑𝑟,𝑔�⃗� 𝑑𝑟,𝑔 + 𝛼𝑙𝜌𝑙�⃗� 𝑑𝑟,𝑙�⃗� 𝑑𝑟,𝑙) + 𝐹 𝑡  

𝐹 𝑡 is the source term due to the use of porous medium 

approach. 𝜇𝑏 is the mixture viscosity: 

𝜇𝑏 = 𝛼𝑔𝜇𝑔 + 𝛼𝑙𝜇𝑙 (5) 

�⃗� 𝑑𝑟,𝑘 is the drift velocity of the phase 𝑘: 

�⃗� 𝑑𝑟,𝑘 = �⃗� 𝑘 − �⃗� 𝑏 (6) 
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The drift velocity is related to the relative (or slip) 

velocity according to: 

�⃗� 𝑑𝑟,𝑔 = �⃗� 𝑔𝑙 (1 −
𝛼𝑔𝜌𝑔

𝜌𝑏
) (7) 

�⃗� 𝑑𝑟,𝑙 = �⃗� 𝑔𝑙 (
𝛼𝑙𝜌𝑙
𝜌𝑏

− 1) (8) 

In the CFD code used, the algebraic slip formulation 

from Manninen [18] was implemented. With this 

formulation,  the slip velocity is given by: 

�⃗� 𝑔𝑙 =
𝜏𝑔

𝑓𝑑𝑟𝑎𝑔

(𝜌𝑔 − 𝜌𝑏)

𝜌𝑔
 𝑎  (9) 

where 𝜏𝑔 is the particle relaxation time,  

𝜏𝑔 =
𝜌𝑔𝑑𝑔

2

18𝜇𝑔
 (10) 

𝑑𝑔 is the gas particle diameter and 𝑎  is the 

acceleration.  

𝑎 = 𝑔 − (�⃗� 𝑏 ⋅ ∇)�⃗� 𝑏 −
𝜕�⃗� 𝑏
𝜕𝑡

 (11) 

For the model of Schiller and Naumann [13], commonly 

used, 𝑓𝑑𝑟𝑎𝑔 is expressed as a function of the drag 

coefficient 𝐶𝐷 and the relative Reynolds number: 

𝑓𝑑𝑟𝑎𝑔 =
𝐶𝐷𝑅𝑒

24
 (12) 

𝑅𝑒 =
𝜌𝑙‖�⃗⃗� 𝑔−�⃗⃗� 𝑙‖𝑑𝑔

𝜇𝑙
 (13) 

 

This slip velocity formulation is not suitable for a two-

phase flow in tube bundles because it was not designed 

for such a configuration and it does not take into account 

the associated physical phenomena.  

 

Here, we proposed to reformulate the slip velocity in 

order to introduce a model adapted to a two-phase flow 

within a tube bundle. The slip velocity is the velocity 

difference between the gas phase  and the liquid phase. 

�⃗� 𝑔𝑙 = �⃗� 𝑔 − �⃗� 𝑙 (14) 

The velocity components in the previous equation can 

be written as: 

{
 
 

 
 𝑢𝑔𝑙,𝑥 = 𝑢𝑙,𝑥 (

𝑢𝑔,𝑥

𝑢𝑙,𝑥
− 1) = 𝑢𝑙,𝑥(𝑆𝑥 − 1)

𝑢𝑔𝑙,𝑦 = 𝑢𝑙,𝑦 (
𝑢𝑔,𝑦

𝑢𝑙,𝑦
− 1) = 𝑢𝑙,𝑦(𝑆𝑦 − 1)

 (15) 

where 𝑆𝑥 (resp. 𝑆𝑦) is the slip according to 𝑥 direction 

(resp. 𝑦 direction). For an upward cross-flow to the tube 

bundle in the 𝑦 direction (resp. 𝑥 direction), it can be 

assumed that 𝑢𝑙,𝑥 = 0 (resp. 𝑢𝑙,𝑦 = 0) and therefore 

𝑆𝑦 = 𝑆 (resp. 𝑆𝑥 = 𝑆).  

 

 

For cross-flow, the velocity ratio 𝑆 of Feenstra et al. 

[17] defined by: 

𝑆 = 1 + 25.7√𝑅𝑖 ∗ 𝐶𝑎𝑝 (
𝑃

𝐷𝑒𝑥𝑡
)
−1

 (16) 

is introduced in equation (15). 

The Richardson number is the ratio between the 

buoyancy force and the inertia force.  

𝑅𝑖 =
(𝜌𝑔 − 𝜌𝑙)

2
𝑔(𝑃 − 𝐷𝑒𝑥𝑡)

𝑚𝑝̇
2  (17) 

𝑚𝑝̇  is the pitch mass flux which represents the 

mixture velocity between two tubes ‖�⃗� 𝑏,𝑝‖ multiplied 

by the mixture density: 

 �̇�𝑝 =
𝛼𝑔𝜌𝑔‖�⃗� 𝑔,𝑝‖ + 𝛼𝑙𝜌𝑙‖�⃗� 𝑙,𝑝‖

𝜌𝑏
 (18) 

‖�⃗� 𝑘,𝑝‖ = ‖�⃗� 𝑘‖
𝑃

𝑃 − 𝐷𝑒𝑥𝑡
 (19) 

The Capillary number is the ratio between the viscous 

force and the surface tension force. 

𝐶𝑎𝑝 =
𝜇𝑙‖�⃗� 𝑔,𝑝‖

𝜎
 (20) 

The gas phase velocity is based on the resulting void 

fraction: 

‖�⃗� 𝑔,𝑝‖ =
𝑥𝑚𝑝̇

𝜀𝜌𝑔
 (21) 

Feenstra et al. developed this velocity ratio model for 

upward cross-flow through horizontal tube bundles and 

validated it with experimental void fraction 

measurements including the experiment of Dowlati et 

al.  

 

From the continuity equation for the gas phase, using 

the definition of the drift velocity (6) to eliminate the 

phase velocity, the volume fraction equation for the 

phase 𝑔 is solution of: 
𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔) + 𝛻 ⋅ (𝛼𝑔𝜌𝑔�⃗� 𝑏)

= −∇ ⋅ (𝛼𝑔𝜌𝑔�⃗� 𝑑𝑟,𝑔) 
(22) 

 

The source term 𝐹 𝑡 is added to the momentum 

equation because tube bundles are represented by a 

porous medium. It is expressed in 𝑁/𝑚3 and is 

usually written as: 

{
𝐹𝑡,𝑥 = −(𝐷𝑥𝑥𝜇𝑏𝑢𝑏,𝑥 + 𝐾𝑥𝑥

1

2
𝜌𝑏‖�⃗� 𝑏‖𝑢𝑏,𝑥)

𝐹𝑡,𝑦 = −(𝐷𝑦𝑦𝜇𝑏𝑢𝑏,𝑦 + 𝐾𝑦𝑦
1

2
𝜌𝑏‖�⃗� 𝑏‖𝑢𝑏,𝑦)

 (23) 

 

This term is composed of a viscous loss term and an 

inertial loss term resulting from Darcy-Forchheimer’s 
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law [19]. ‖�⃗� 𝑏‖ is the mixture velocity magnitude and 

𝐾𝑥𝑥, 𝐾𝑦𝑦, 𝐷𝑥𝑥 and 𝐷𝑦𝑦 diagonal coefficients of the 

matrices 𝐾 and 𝐷. In this study, the first term of 

equation (23) is neglected because the flow is 

turbulent.  

 

Moreover, 𝐾𝑥𝑥 and 𝐾𝑦𝑦 are obtained from empirical 

correlations of two-phase frictional pressure drop in 

tube bundles coming from the literature. Equation (23) 

is rewritten as: 

{
 
 

 
 𝐹𝑡,𝑥 = −

Δ𝑃𝑓,𝑥
2Φ

𝑁𝑅,𝑥𝑃𝑥

𝐹𝑡,𝑦 = −
Δ𝑃𝑓,𝑦

2Φ

𝑁𝑅,𝑦𝑃𝑦

 (24) 

Δ𝑃𝑓,𝑖
2Φ is the two-phase frictional pressure drop, 𝑁𝑅,𝑖 is 

the number of tube rows and 𝑃𝑖 is the pitch in direction 

𝑖 (𝑥  ou 𝑦 ). From equations (23) and (24), unknown 

coefficients 𝐾𝑥𝑥 and 𝐾𝑦𝑦 are defined by: 

{
 
 

 
 𝐾𝑥𝑥 = −

Δ𝑃𝑓,𝑥
2Φ

1
2𝜌𝑏

‖�⃗� 𝑏‖𝑢𝑏,𝑥𝑁𝑅,𝑥

 
1

𝑃𝑥

𝐾𝑦𝑦 = −
Δ𝑃𝑓,𝑦

2Φ

1
2𝜌𝑏

‖�⃗� 𝑏‖𝑢𝑏,𝑦𝑁𝑅,𝑦

 
1

𝑃𝑦

 (25) 

The two-phase friction factor 𝑓2Φ and the two-phase 

frictional pressure drop Δ𝑃𝑓
2Φ are linked through the 

relation: 

Δ𝑃𝑓
2Φ =

2�̇�2𝑁𝑅
𝜌𝑏

𝑓2Φ (26) 

 

Consolini et al. defined a two-phase multiplier 

coefficient 𝜆 as the ratio between the two-phase friction 

factor and the single-phase friction factor [20]. 

𝑓2Φ = 𝜆𝑓 (27) 

Their correlation is written as: 

{

 𝜆 = Λ + (1 − Λ)(1 − 2𝑥)2

Λ = (
�̇�𝑝

400
)
−1.5  (28) 

It is important to note that the two-phase multiplier 

factor is equal to 1 when the quality tends towards 0 

(only liquid phase) and 1 (only gas phase). This key 

argument is not available with the correlation of Ishihara 

et al. [21] based on the Lockhart-Martinelli approach 

[22] which was the method used by Dowlati et al. in 

[16]. 

To compute the two-phase frictional pressure drop, the 

single-phase friction factor 𝑓 must be defined. 

𝑓 =
𝐸𝑢

4
 (29) 

Zukauskas et al. [23] proposed a correlation for the 

Euler number resulting from their experiments and 

experimental results from the literature. This law 

enables to determine frictional pressure drops for in-

line and staggered tube bundles with 1.25 ≤ 𝑃/
𝐷𝑒𝑥𝑡  ≤ 2.5 and 10 ≤ 𝑅𝑒 ≤ 106. The Euler number is 

calculated as : 

 
𝐸𝑢

𝑘1
=∑

𝑐𝑖
𝑅𝑒𝑖

4

𝑖=0

 (30) 

where 𝑐𝑖 and 𝑘1 are coefficients given in reference [9]. 

 

RESULTS AND DISCUSSION 

Dowlati et al.’s experiment: The method 

presented in the previous section is validated with the 

experiment of Dowlati et al..  The bundle is made up 

of 20 tube rows, with 5 tubes in each row, and the ratio 

𝑃/𝐷𝑒𝑥𝑡 is 1.75 (see Figure 1). The quality is between 

1.3 × 10−4 and 3 × 10−2 and the mass flux is 

between 164 kg/(m2. s) and 538 kg/(m2. s). 

 

Figure 1 

Staggered tube bundle from Dowlati’s experiment 

(𝑃/𝐷𝑒𝑥𝑡 = 1.75) 

 

CFD simulations: For CFD simulations, the tubes in 

the tube bundle were not represented. It was modelled 

as a porous medium by adding source terms in the 

momentum equations. Dimensions of the geometry are 

given in Table 1.   

 

At the inlet, the homogeneous void fraction model is 

assumed, the slip is thus 1 and the phase velocities are 

the same. The homogeneous void fraction 𝜀𝐻 is 

defined from equation (32) and phase velocities are 

written as follows: 
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�⃗� 𝑔,𝑖𝑛 = (

0
𝑥�̇�

𝜌𝑔𝜀𝐻

)

𝑥 ,�⃗� 

   

�⃗� 𝑙,𝑖𝑛 = (

0
(1 − 𝑥)�̇�

𝜌𝑙(1 − 𝜀𝐻)
)

𝑥 ,�⃗� 

  

(31) 

 𝜀𝐻 =
1

1 + 𝑆
𝜌𝑔
𝜌𝑙

(1 − 𝑥)
𝑥

 
(32) 

Table 1 

Dimensions of the modelled geometry 

 Value  

Outer diameter of a tube 

𝐷𝑒𝑥𝑡  [mm] 
12.7 

Ratio 
𝑃𝑥

𝐷𝑒𝑥𝑡
 [-] 1.75 

Pitch 𝑃𝑥 [mm] 22.225 

Pitch 𝑃𝑦[mm] 19.25 

Width 𝐿 = 5𝑃𝑥 [mm] 111.125 

Height 𝐻 = 20𝑃𝑦 [mm] 385 

 

Calculations are initialized from the input boundary 

condition. The mesh is defined in such a way as to 

ensure that 𝑦+ is close to 1 (Figure 2). The turbulent 

model k-𝜔 SST was used. 

 

 

Figure 2 

Mesh used for CFD calculations 

 

CFD results: Figure 3 depicts void fraction results for 

the two-phase flow across the horizontal staggered rod 

bundle of Dowlati et al. with 𝑃 𝐷𝑒𝑥𝑡
⁄ = 1.75. 

The black line represents the homogeneous model 

defined by Equation (32) with 𝑆 = 1. This model 

always overpredicts the void fraction. For an upward 

two-phase cross-flow through a horizontal tube 

bundle, the gas phase and the liquid phase do not have 

the same velocity and this can be noticed in Figure 3. 

It can also be seen that the void fraction increases 

with the quality and also with the mass flux. Roser 

[24] justified this phenomenon by the upward 

movement of the gas phase against the liquid phase 

due to the buoyancy force is all the more important 

that the mass velocity is low. For higher mass 

velocity, the gap with the homogeneous void fraction 

model is less significant. Indeed, the two phases are 

“well mixted” due to the increase in turbulence.  

The developed method (plotted in Figure 3 with Δ) is 

in agreement with the experimental results (plotted in 

Figure 3 with ▲). Feenstra’s correlation is 

implemented in the CFD code and it can be seen in 

Figure 4 that it always underpredicts the void fraction 

compared to the experimental results. However, 

errors are acceptable and Figure 4 shows that the 

relative error is more important for high mass flux and 

low quality. 

 

Figure 3 

Void fraction as a function of quality and mass 

velocity (Δ = results from CFD simulations and 

▲ = experimental measurements) 

 
Figure 4 

Computed void fraction vs experimental void 

fraction 

 

𝑥  

𝑦  
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Figure 5 summarized the results obtained for �̇�𝑝 =

401 kg/(m².s) with different methods. First, the 

homogeneous model which always overestimated the 

void fraction. Indeed, it was not possible to exceed this 

value. In contrast, void fractions calculated from the 

iterative method of Feenstra et al. were 

underpredicted compared to the experiment. But it was 

acceptable with a mean relative error of 17%. Indeed, 

Feenstra et al. developed their model with  their 

measurements in R-11 flow, then they checked that 

their correlation agreed well with measurements in air-

water mixtures. It is important to note that the 

implementation of the slip model of Feenstra et al. into 

the relative velocity, as explained in the previous 

section, was verified by the results obtained with CFD.  

 

Figure 5 

Void fraction results for �̇�𝑝 = 401 kg/(m².s) with 

the original Feenstra’s correlation 

 

In the same way, the results obtained for other 

measument points led to the same conclusions, as for 

�̇�𝑝 = 247 kg/(m
2. s) plotted in Figure 6.  

 

Figure 6 

Void fraction results for �̇�𝑝 = 247 kg/(m².s) with 

the original Feenstra’s correlation 

 

Feenstra used the mass flux between two tubes �̇�𝑝 in 

order to compute the Capillary number in Equation 

(20) and Equation (21). In Figure 7 and Figure 8, we 

showed that it was better to express the Capillary 

number from the upstream mass velocity �̇�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚. 

The upstream mass velocity and the mass velocity 

between two tubes are linked by:  

�̇�𝑝 = �̇�𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚

𝑃

𝑃 − 𝐷𝑒𝑥𝑡
 (33) 

With this modified Feenstra’s correlation, the results 

were always improved compared to the experimental 

results and the original Feenstra’s correlation. Indeed, 

Figure 7 shows that the results with the modified 

Feenstra’s correlation were closer to experimental 

results than the original Feenstra’s correlation.  

It is important to note that only 10% of the 

simulations had a relative error for the void fraction 

higher than 20% for the modified Feenstra’s 

correlation. As can be seen in Figure 8, these points 

were located at low void fractions. For higher void 

fraction, results were closer to the experiment.    

 

Figure 7 

Void fraction results for �̇�𝑝 = 401 kg/(m².s) with 

the modified Feenstra’s correlation 

 

 

Figure 8 

Computed void fraction with the modified Feenstra’s 

correlation vs experimental void fraction 
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Moreover, calculations were performed with the slip 

velocity formulation of Manninen et al. which showed 

that this model does not take into account the slip 

between phases for flows in tube bundles. Void 

fraction results showed that the homogeneous model is 

obtained with this formulation and stressed that it is 

important to implement a void fraction model 

appropriate for a two-phase cross-flow through a 

horizontal tube bundle. 

 

Figure 9 

Computed total  pressure drop with the modified 

Feenstra’s correlation 

 

Figure 9 represents the total pressure drop obtained by 

CFD calculations with the modified Feenstra’s 

correlation. Unfortunately, these values cannot be 

compared with the experimental ones because the 

experiments did not explicitly give the value of the 

frictional pressure drop and the post processing 

method causes too many uncertainty of measurement.  

In Figure 10, the contributions of two-phase 

frictional and gravitional pressure drops into the total 

pressure drop are plotted. The gravitational pressure 

drop decreases when the void fraction increases and is 

barely dependent on the mass flux. On the contrary, the 

two-phase frictional pressure drop is highly dependent 

on the mass flux and less on the void fraction. The 

frictional pressure drop depends on the void fraction 

when it is larger than 0.6. 

 

 

Figure 10 

Contribution of frictional and gravitionnal pressure 

drops with the modified Feenstra’s correlation 
 

CONCLUSIONS 
 

The developed method consisted of rewriting the 

relative velocity as a function of slip in order to 

introduce a slip model adapted to the modelled 

geometry. Here, the two-phase cross-flow through a 

horizontal tube bundle was modelled and the slip 

model of Feenstra et al. was used. This model was 

implemented in Ansys Fluent in order to compute the 

slip velocity and therefore determine the void fraction 

in the tube bundle. A CFD porous media approach, 

where source terms were added in the momentum 

equation, was used to reduce computational cost and 

time. The approach was validated with the 

experimental results of Dowlati et al.. Results were 

satisfactory compared to the experiment. The 

implementation of the original Feenstra’s correlation 

in the CFD code was verified. In addition, the 

definition of the Capillary number from the upward 

mass velocity improved the results. Indeed for a large 

majority of the simulations with this modification, the 

relative error between the experiment and simulations 

was under 10%.  

This method which yields satisfactory results needs 

to be expanded. For instance, it would be interesting 

to develop the same method as Feenstra et al. in order 

to develop a slip model for two-phase parallel-flow in 

a staggered vertical tube bundle.  
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