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Abstract. Forecasting an hourly heat demand during different periods of district heating network operation 
is essential to optimize heat production in the CHP plant. The paper presents the heat demand model in the 
real district heating system with a peak load of 200 MW. The predictive model was developed with the use 
of the machine learning method based on the historical data. The XGBoost (Extreme Gradient Boosting) 
algorithm was applied to find the relation between actual heat demand and predictors such as weather data 
and behavioral parameters like an hour of the day, day of week, and month. The method of model training 
and evaluating was discussed. The results were assessed by comparing hourly heat demand forecasts with 
actual values from a measuring system located in the CHP plant. The RMSE and MAPE error for the 
analysed time period were calculated and then benchmarked with an exponential regression model supplied 
with ambient air temperature. It was found that the machine learning method allows to obtain more accurate 
results due to the incorporation of additional predictors. The MAPE and RMSE for the XGBoost model in 
the day-ahead horizon were 6.9% and 8.7MW, respectively.   

1 Introduction 
District heating systems are commonly used for useful 
heat production and distribution in central end eastern 
Europe. Typical system consist of heat generation units 
supplying district heating network (DHN). The system's 
effective operation depends on the accuracy and 
reliability of heat demand predictions in the short and 
long term horizon [1]. Hourly heat demand in the day-
ahead is needed for short-term planning and 
optimization of energy production in cogeneration heat 
and power plants (CHP) [2]. In district heating systems, 
the production of electricity is dependent on the actual 
heat load. Thus, a precise heat load forecast is also 
relevant to estimate electricity production for trading in 
the day-ahead market.  

Actual heat demand in DHN depends mainly on the 
weather data and end-user behavior. Non-stationary 
effects associated with heat accumulation and losses in 
DHN [3] and thermal inertia in buildings [4] should also 
be considered.  

Heat demand models are mainly based on the data-
driven approach where historical data from the 
operation of the system are used. Primarily, weather data 
such as ambient air temperature, wind speed, and solar 
irradiation are needed. In the literature, the application 
of the predictive model in real district heating systems 
can be found. Dotzdauer [5] developed a simple model 
based on linear regression of ambient air temperature. 
Baltputnis et al. [6] used a  polynomial regression of 
outdoor temperature. Fang et al. [7] applied multiple 
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regression of air temperature and wind speed to improve 
heat demand forecasts. It was found by Bianchi et al. [8] 
that the heat demand model is more accurate if it 
includes social components such as holidays, the day of 
the week and the hour of the day. The use of multiple 
predictors over a long period of time often requires the 
application of advanced algorithms such as machine 
learning (ML) methods. In this case, the regression 
supervised learning technique is used. It aims to model 
the relationship between a certain number of predictors 
and a continuous target variable.  

 Recently, new solutions using ML are exploring in 
the field of heat load prediction for a large DHN [9] or 
individual building [10]. Idowu [11] et al. tested 
machine learning-based approaches (support vector 
regression, decision tree, feed-forward neural network) 
based on the data coming from residential and 
commercial buildings. Kurek et al. [12] successfully 
applied an artificial neural network in a real large-scale 
DHN. Saloux et al. [13] compared ML models with 
linear regression of ambient temperature and proved that 
ML leads to obtain more accurate and reliable results. 
Dahl et al. [14] demonstrated a support vector regression 
model supplied with the weather, calendar, and holiday 
data. It was shown that calendar data could significantly 
improve the accuracy of the model due to the capture of 
social patterns.  

In this paper, the XGBoost algorithm was applied to 
develop the heat demand model in a case study DHN. 
The algorithm provides an implementation of the 
gradient boosted trees algorithm that was proposed by 
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Chen et al. [15] in 2016. It has become a popular method 
used in various data mining scenarios and algorithm 
competitions. In the following chapters, the method of 
training and evaluation is presented.   

2 Heat demand model for case study 
DHN 
The heat demand model was developed for a real case 
study district heating system comprised of a gas-fired 
CHP plant supplying DHN with approximately 100,000 
end-users. A peak heat load during winter is around 200 
MW. During the summer period, the heat load for 
domestic hot water ranges from 20 to 30 MW. The heat 
output at the CHP is regulated by changing the supply 
temperature as well as flow rate of hot water taking into 
account current demand. Figure 1 presents the scatter 
plot of ambient air temperature and heat demand over a 
calendar year of the operation. It can be noticed a large 
spread for the same temperature values. Thus, in order 
to increase the accuracy of the heat load forecast, it is 
necessary to consider additional weather and other 
parameters. Depending on the district heating system, 
solar irradiation and wind speed can also be significant 
predictors for the heat load. 

Fig. 1. Hourly heat demand with ambient air temperature 

2.1 XGBoost algorithm  

XGBoost is an implementation of gradient tree boosting 
technique, which combines multiple weak classifiers 
into a strong classifier. The main idea is to sequentially 
add decision trees to the ensemble model to improve the 
accuracy. The target variable is predicted using additive 
functions as in Equation 1 [15].  
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where 𝑦𝑦�� is the predicted result based on features 𝑋𝑋�, 𝑦𝑦�
� is 

the initial guess and 𝜂𝜂 is the learning rate that helps to 
improve smoothly the model while adding new trees and 
avoid overfitting [15].  

The estimation 𝑓𝑓� of the additional k-th estimators is 
presented in Equation 2 [16].  
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where 𝑦𝑦��
� is the k-th predicted result and 𝑓𝑓� is defined by 

the leaves weights. To learn the functions used in model 
above, the following regularized objective 𝐿𝐿(𝜙𝜙) is 
minimized (Eq. 3) [16].  
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Here, 𝑙𝑙(𝑦𝑦��, 𝑦𝑦�) is a differentiable convex loss function that 
measures the difference between the prediction 𝑦𝑦��and the 
target 𝑦𝑦�. The second term 𝛺𝛺 penalizes the complexity of 
the model and it acts as an additional regularization term 
helps to avoid overfitting. XGBoost uses second-order 
Taylor expansion to expand the loss function in the 
gradient boosting process in an iterative way [17].  

In this work, the extreme gradient tree boosting 
framework in R programming language and open-source 
library named xgboost [18] was used.  

2.2 Evaluation metrics  

The model forecasts were examined with RMSE (Root 
Mean Square Error) as in Equation 4. MAPE (Mean 
Absolute Percentage Error) as in Equation 5. was also 
used as a evaluation metric.  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 ��
�

∑ �𝑄𝑄����,� − 𝑄𝑄����,��
�

�     (4) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  ���%
�

∑ ������,�������,�

�����,�
��      (5) 

where (Qpred - Qreal) is the difference between the 
predicted (in the day-ahead) and real heat load,  
t  corresponds to hour and N is a total number of hours 
in the analysed period.  

The ML model with the XGBoost algorithm was 
compared with a simple exponential regression with one 
predictor (Equation 6).  

    
𝑄𝑄����,� = 𝐴𝐴𝐴𝐴(���,�∙�)     (6) 

 
Where tam is the ambient air temperature, A and B 
coefficients were determined for each month separately 
for the learning dataset using nonlinear fitting.   

2.3 Input variables 

The target variable for the predictive model was actual 
heat demand, aggregated in an hourly resolution by the 
heat meter located at the outlet of CHP to DHN. The 
following weather data was used to train the model: 

 tam – ambient air temperature (°C), 
 vwind – wind speed (m/s), 
 Irad – solar irradiation (W/m2), 
 φ – humidity (%). 

 
The algorithm was trained with the real weather data 

while weather forecasts in the day-ahead horizon were 
used to generate predictions. Additional parameters 
were included using categorical variables representing 
social behaviour of the end-users: 

 hour – hour of the day, 
 day – day of the week,  
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Fig. 1. Hourly heat demand with ambient air temperature 
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where (Qpred - Qreal) is the difference between the 
predicted (in the day-ahead) and real heat load,  
t  corresponds to hour and N is a total number of hours 
in the analysed period.  

The ML model with the XGBoost algorithm was 
compared with a simple exponential regression with one 
predictor (Equation 6).  
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Where tam is the ambient air temperature, A and B 
coefficients were determined for each month separately 
for the learning dataset using nonlinear fitting.   

2.3 Input variables 

The target variable for the predictive model was actual 
heat demand, aggregated in an hourly resolution by the 
heat meter located at the outlet of CHP to DHN. The 
following weather data was used to train the model: 

 tam – ambient air temperature (°C), 
 vwind – wind speed (m/s), 
 Irad – solar irradiation (W/m2), 
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The algorithm was trained with the real weather data 

while weather forecasts in the day-ahead horizon were 
used to generate predictions. Additional parameters 
were included using categorical variables representing 
social behaviour of the end-users: 

 hour – hour of the day, 
 day – day of the week,  

 month – month of the year. 
 
The historical data aggregated at 1 hour time interval 

from two subsequent heating seasons were used (from 
September 2016 to December 2018). The learning 
dataset was divided – 75% was used as a training set and 
25% for validation. The validation part of the data was 
used to check the model accuracy on the set that was not 
used for learning the algorithm. A model hyper-
parameters was tuned to obtain high accuracy during 
validation. Then, the previously developed model was 
used to generate predictions for the data from January – 
April 2019.   

2.4 Model training and validation 

An important aspect during the implementation of 
ML models is to avoid overfitting. A model can be 
extremely trained to the learning datasets while it could 
give significant error on the new dataset. An optimal set 
of input variables and hyper-parameters were found in 
order to minimize RMSE on the validation dataset. In 
Figure 2, RMSE of the XGBoost model is presented for 
each dataset. The analysis includes two cases. In the 
first, only weather data were used to build the model. In 
the second, additional parameters such as an hour of the 
day, day of week, month were additionally included. It 
can be found that the inclusion of social components by 
incorporating calendar data, results in increased 
accuracy of the model on both datasets. Since the model 
is supplied by weather forecast during operation, 
relevant predictors are affected by forecast error. The 
average difference between predicted and actual value 
for the analyzed dataset was 1.51 °C for air temperature, 
0.68 m/s for wind speed and 45.9 W/m2 for solar 
irradiation. RMSE error on the validation dataset was 
calculated both using real and forecasted weather data in 
the day-ahead horizon (Figure 2). The analysis shows 
that RMSE error is greater by approximately 2.3 when 
forecast weather data is used.   

 

 
Fig. 2. RMSE error on the train and test dataset depending on 
the set of input variables. 

During training the model, three hyper-parameter 
were adjusted in order to minimize error. These are: 
n_estimators (the number of iterations in training), 
max_depth (maximum depth of a tree), learning_rate 
(reduce the weight of each step to make the model more 
robust) and min_split_loss (defines the sum of sample 

weight of the smallest leaf nodes to prevent overfitting) 
[19]. Other parameters in the package were left with 
their default values. In Figure 3, the RMSE error during 
iteration process of learning the model is presented, 
respectively for two sample sets of hyper-parameters. 
The problem of overfitting was encountered as was 
presented in the Figure 3a. As the iteration of the model 
increases, the error increases on the test set (that was not 
used for training). Reduction in depth of the tree and 
learning rate led to an improvement in accuracy. The 
selected values of parameters are as follows: 
n_estimators = 300, max_depth = 8, learning_rate = 0.1, 
min_split_loss = 3.  

 
a) 

b) 

Fig. 3. RMSE error on the train and test dataset depending on 
the set of hyperparameters values. (a) max_depth = 12, 
learning_rate = 0.3, min_split_loss = 1 (b) max_depth = 8, 
learning_rate = 0.1, min_split_loss = 3 

3 Results and discussion 
The paragraph discusses the accuracy of the 

developed heat demand model in a case study DHN 
during the heating season. The analysis covers the 
period from January to April 2019. This dataset was 
excluded from the training and validation process of the 
model. In Figure 4, the time course of hourly absolute 
percentage error is presented together with real values 
of heat demand. It can be noticed that the model gives a 
larger error during March and April, where the air 
temperature is relatively higher, and significant 
fluctuations of heat load over the day occur, both in 
magnitude and variance. Moreover, the weather forecast 
is more inaccurate during this period which affects 
additional model errors. The aggregated error metrics 
such as MAPE varies over the months, but it is also 
important to look at instantaneous relative residuals. 
Maximum errors of the model can be relevant for 
production planning in CHP plant, particularly for 
trading in the electricity market. A vast majority (about 
90%) of relative errors are in the range of -10% to 10%. 
The maximum error value is more than 30%.  

Table 1 summarizes the outcome from the analysis 
where evaluation metrics are provided and benchmarked 
with reference model for the whole analysed period. It 
can be noticed that a simple model-driven by only one 
parameter (ambient air temperature) gives greater 
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inaccuracy. RMSE error for ML method is smaller by 
5.9 MW as well as MAPE metric and distribution (1st 
and 3rd quartile) is also significantly slighter. MAPE 
and RMSE error of hourly heat load forecasts during 
analysed period of the heating season (from January to 
end of April) was 6.86 % and 8.67 MW, respectively. 
The obtained accuracy of the predicted heat load is 
worse compared with learning and validation dataset, so 
it is worth considering more frequent calibration of the 
model during its online operation. 

 

 
Fig. 4. Real vs. predicted heat load with XGBoost algorithm  

 

Table 1. Comparison between machine learning and the 
exponential model (Jan – April) 

Metric XGBoost 
model 

Exponential 
model 

RMSE 8.67 MW 14.53 MW 

MAPE 6.86 % 12.92 % 

1st Quartile of 
MAPE 2.17 % 4.26 % 

Median 4.85 % 9.10 % 

3rd Quartile of 
MAPE 9.52 % 15.64 % 

4 Conclusions 
Predicting day-ahead heat load in the District Heating 
System is essential to effective optimization of heat 
production in CHP plants. Various machine learning 
approaches can be applied to deal with this problem. The 
extreme gradient boosting method and XGBoost library 
has been considered and proven to be an effective tool 
for heat load forecasting in case study DHN. One of its 
major strengths is the ability to include a lot of data and 
predict short term fluctuations of heat load without 
knowledge of the underlying physical principles.  

It has been found that the proposed method can 
significantly improve the accuracy of prediction by 
capturing the additional factors related to end-users 
behaviour like day of the week, hour of the day, month.    
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