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Abstract. The paper presents mixed models collected from the literature for calculating the thermal 
conductivity of the soil. They are created on the basis of combining the serial and parallel model. The thermal 
conductivity of the soil is the basic thermal parameter of the soil. Knowledge of it is necessary, among other 
things, for the proper design of underground infrastructure. The combination of models will help you to 
choose the method of calculating the thermal conductivity of the soil that gives the most accurate results and 
has the lowest error.

1 Introduction 
One of the basic thermal parameters of soil is its thermal 
conductivity. Knowledge of it is essential for the proper 
design of, among others, underground infrastructure. 
Correct determination of this parameter is important 
when designing installations using renewable energy 
sources, operating on the basis of ground heat 
exchangers. There are many models for calculating the 
thermal conductivity of soil, available in the literature 
including empirical models (e.g. Kersten, 1949; 
Johansen, 1975; Campbell, 1985; Cote and Konrad, 
2005, 2005a; Balland and Arp, 2005; Lu et al., 2007; 
Chen, 2008; Lu et al., 2014; Zhang et al., 2015; 
Tarnawski and others, 2016; Tong et al., 2016; He et al., 
2017; Zhao et al., 2019; Wang et al., 2019; Tian et al., 
2020; Xiao et al., 2020; Song et al., 2020; Sun et al., 
2020; He et al. 2020), mathematical (e.g. De Vries, 
1963; Haigh, 2012; Ofrikhter et al., 2018; Zhu, 2020), 
numerical (e.g. Wien et al., 2020; Rizvi et al., 2020; 
Zhang et al. 2020; Shrestha and Wuttke, 2020) and 
mixed. The compilation of the existing models was 
undertaken, among others, by Farouki [1], He et al. [2], 
Rerak [3], Zhang [4] and Różański [5]. The purpose of 
this article is to compile the mixed models for 
calculating the thermal conductivity of the soil. 
 

2 Review of mixed models of thermal 
conductivity of soil 
Mixed models are constructed on the basis of combining 
a serial and a parallel model. The series model assumes 
that a constant heat flux flows through each soil element 
connected in series and thus, depending on the thermal 
conductivity of the individual elements, each of them 
produces different temperature gradients. In parallel 
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models, it is assumed that the temperature gradient in 
individual phases or elements is identical (each phase 
has the same temperature difference) but, depending on 
the thermal conductivity of each element, conducts a 
different heat flow. Series and parallel models are also 
referred to as upper and lower limits [6]. 

2.1 The model of Wiener [7] 

Wiener derived equations indicating that the thermal 
conductivity of a porous medium, which consists of a 
soil skeleton, liquid and gas, has a lower and an upper 
limit. When all soil components are arranged in series, 
the soil reaches the lower limit, i.e. the lowest thermal 
conductivity, while when the soil components are 
arranged in parallel, the soil reaches the highest value of 
thermal conductivity, i.e. the upper limit. The effective 
thermal conductivity of mixtures arranged in parallel is 
given by the equation: 

𝑘𝑘 = 𝑘𝑘�� = �∑ ��
��
�
��
,    (1) 

where kL
W is the thermal conductivity corresponding to 

the lower Wiener limit [W/mK], nα and kα are the 
porosity and thermal conductivity of the phase, 
respectively. For parallel mixtures, the effective thermal 
conductivity is given by the equation: 

𝑘𝑘 = 𝑘𝑘�� = ∑𝑛𝑛� 𝑘𝑘𝑘𝑘,    (2) 

where kU
W is the thermal conductivity corresponding to 

the Wiener upper limit [W/mK]. Wiener boundaries are 
independent of the pore structure of the porous medium. 
This model is not applicable to soils [7]. 
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2.2 The model of Hashin-Shtrikman [Błąd! Nie 
zdefiniowano zakładki.] 

According to Dong et al. [6] the Hashin-Shtrikman 
model sets the effective limits of thermal conductivity 
for composite materials. The upper HS_U and lower 
HS-L limits of the model always lie within the parallel / 
series limits, regardless of the component volumetric 
fraction or thermal conductivity. The lower limit of the 
model is determined by the equations: 

𝑘𝑘��
� = 𝑘𝑘� + 3𝑘𝑘�

∑ ��� �����
��⁄ ��

���
���∑ �����

� �����
��� ��

���
,  (3) 

where f is the volumetric fraction of individual phases: 
air, water, soil skeleton [-], and 

𝑐𝑐�
� = 3 𝑘𝑘� (𝑘𝑘� − 𝑘𝑘�),⁄      (4) 

where ki is the thermal conductivity of the individual 
phases [W/mK] and ka=0,56, kw=0,026. The upper limit 
is described by the equation: 

𝑘𝑘��
� = 𝑘𝑘� + 3𝑘𝑘�

∑ ��� �����
��⁄ ��

���
���∑ �����

� �����
��� ��

���
,   (5) 

where: 

𝑐𝑐�
� = 3 𝑘𝑘� (𝑘𝑘� − 𝑘𝑘�).⁄     (6) 

The model assumes that the composite materials are 
macroscopically homogeneous, isotropic, multiphase. 

2.3 The model of Tong et al. [8] 

Based on the Wiener model Tong et al. [8] proposed a 
model of thermal conductivity in a closed form. It takes 
into account the combined effect of the mineral 
composition of the soil skeleton, temperature, degree of 
liquid saturation, porosity and pressure on the effective 
thermal conductivity of porous media in a multiphase 
flow with a phase change. The effective thermal 
conductivity is calculated in three stages: in the first 
step, the thermal conductivity of the individual soil 
components, i.e. gas, liquid (water) and the soil 
skeleton, is calculated; then the effective thermal 
conductivity of the two-phase soil skeleton - gas mixture 
is determined, in the third step the effective thermal 
conductivity of the three-phase mixture of solid, liquid 
and gas is determined. The model strictly adheres to 
Wiener and Hashin-Shtrikman constraints when the 
porosity n is in the range [0.04; 0.97] and the saturation 
degree with Sr is in the range [0, 1]. The effective 
thermal conductivity of the whole mixture is expressed 
as: 

𝑘𝑘 = (1 − 𝜂𝜂�)𝑘𝑘� + 𝜂𝜂�𝑘𝑘�,    (7) 

where η2 is a function of the pore structure, saturation 
and temperature and according to Wiener constraints for 
anisotropic mixtures it should belong to the range [0,1], 
kL and kU are the upper and lower limits of the three-
phase mixture. According to the Wiener limits kL for 
series connections between solid, liquid and gaseous 
phases is calculated from the formula: 

𝑘𝑘� = 𝑛𝑛�𝑘𝑘� + 𝑛𝑛� �(���)(����)
��

�
��

+ ���
��

�
��

+

�(����)
��

�
��

�
��

=  𝜂𝜂�(1 − 𝑛𝑛)𝑘𝑘� + [1 − 𝜂𝜂�(1 − 𝑛𝑛)]� ∙

�(���)(����)
��

+ ���
��

+ �(����)
��

�
��

,   (8) 

where kg is the thermal conductivity of the gas [W/mK], 
kw is the thermal conductivity of water [W/mK], ks is the 
thermal conductivity of the solid phase [W/mK], η1 is 
the coefficient depending on the pore structure of the 
solid-gas mixture and should be in the range [0, 1] 
according to Wiener limits. For parallel connections 
between solid, liquid and gaseous phases kU is 
calculated from the formula: 

𝑘𝑘� = 𝑛𝑛�𝑘𝑘� + 𝑛𝑛� �(���)(����)
��

𝑘𝑘� + ���
��

𝑘𝑘� +
�(����)

��
𝑘𝑘�� = 𝜂𝜂�(1 − 𝑛𝑛)𝑘𝑘� + �(1 − 𝑛𝑛)(1 − 𝜂𝜂�)𝑘𝑘� +

𝑛𝑛𝑛𝑛�𝑘𝑘� + 𝑛𝑛(1 − 𝑆𝑆�)𝑘𝑘��.   (9) 

The fixed phase in the above equations is divided into 
two parts, where n1=η1(1-n) is constant due to the 
parallel connections and n2=1-η1(1-n) occurs in a 
parallel / series connection. In the case of isotropic 
materials, the model also takes into account the Hashin-
Shtrikman rules, that is: 

𝑘𝑘���
� ≤ 𝑘𝑘 ≤ 𝑘𝑘���

� ,    (10) 

where the limits of the coefficient η2 are: 

𝜂𝜂� ≥ 𝜂𝜂�
� = �����(���)����[����(���)]�

���[����(���)]� ,   (11) 

𝜂𝜂� ≤ 𝜂𝜂�
� = �����(���)����[����(���)]�

���[����(���)]� ,   (12) 

the coefficients A and B are determined as follows: 

𝐴𝐴 = (1 − 𝑛𝑛)(1 − 𝜂𝜂�)𝑘𝑘� + 𝑛𝑛𝑛𝑛�𝑘𝑘� + 𝑛𝑛(1 − 𝑆𝑆�)𝑘𝑘�,  (13) 

𝐵𝐵 = �(���)(����)
��

+ ���
��

+ �(����)
��

�
��

.  (14) 

The model was developed on the basis of experimental 
data of bentonite, but it can also be used to determine 
the thermal conductivity of soils, clays and rocks. 

2.4 The model of Tarnawski and Leong [9] 

Tarnawski and Leong [9] developed a series-parallel 
model to assess the thermal conductivity of unsaturated 
soils. It assumes a one-dimensional heat flow through an 
elementary cubic cell of an unsaturated soil. There are 
three paths of heat flow, i.e. "constant contact path Θsb, 
series-parallel path of solids Θs in a series configuration 
with a parallel path of negligible groundwater content 
nw and negligible soil air content na, and the path of 
water Θw and air Θa in the system serial." The thermal 
conductivity is determined by the equation: 
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where kg is the thermal conductivity of the gas [W/mK], 
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𝑘𝑘����� = 𝑘𝑘�𝛩𝛩�� +
(�����������)�

�������
��

� ���
��

��
���

������
��
���

�

+

(�����)�

�������
��
���

��
�
�(����)������� ��

���
�

��

,  (15) 

where nwm are fluid-filled fine pores. Another variant of 
the model takes into account the path of water and air in 
a parallel configuration: 

𝑘𝑘����� = 𝑘𝑘�𝛩𝛩�� +
(�����������)�

�������
��

� ���
��

��
���

������
��
���

�

+

𝑘𝑘� �𝑛𝑛𝑛𝑛� − 𝑛𝑛��
��
���

� + 𝑘𝑘� �𝑛𝑛(1 − 𝑆𝑆�) − 𝑛𝑛�� �1 −
��
���

��.    (16) 

The model was calibrated with Canadian fine, medium 
and coarse sands. 

2.5 The model of Tokoro et al. [10] 

Tokoro et al. [10] proposed a series-parallel model for 
calculating the thermal conductivity of the soil (Fig. 
1,2): 

𝑘𝑘 𝑘 �
��
+ �

�����
+ �

�����
+ �

��
= 𝑘𝑘�𝑑𝑑� +

�
��
����

� ��
�����������

+ �
��
����

� ��
�����������

+ 𝑘𝑘�𝑑𝑑�� +

𝑘𝑘�𝑑𝑑��,     (17) 

where R is the thermal resistance. They also presented 
an empirical equation based on electrical resistance: 

𝑘𝑘 𝑘 𝑘𝑘 𝑘 𝑘𝑘𝑘𝑘�,     (18) 

where α is treated as a soil dependent variable, β, ϒ are 
constants and r is electrical resistance. This method is 
only applicable to land used for research. 

 

 
Fig. 1. Model of thermal conductivity [10]               

 
Fig. 2. Thermal resistance [10] 

2.6 The model of Lu et al. [11] 

Lu et al. (Lu et al., 2018, 2020) have proposed upper and 
lower limits for the thermal conductivity of soils based 
on the Wiener limits. They derived a simplified parallel 
mixed model: 

𝑘𝑘 𝑘 (𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘�)� ∙ � �

�����
�����

�����
�
�
���

+ Ϛ𝑆𝑆� ,

  (19) 

where ω and Ϛ are empirical fit parameters [11]. 

2.7 The model of Jia et al. [12] 

Jia et al. [12] presented a three-dimensional analytical 
model of a packed sphere. Around the spheres lying next 
to each other and forming the skeleton, voids are filled 
with liquid and gas. The hemisphere radius reflects the 
actual grain diameter, and the minimum and maximum 
porosity of the model is 0.476 and 0.215. The model 
uses soil parameters such as porosity, grain size (grain 
diameters), volumetric water content and thermal 
conductivity of individual soil components: 
 

𝑘𝑘 𝑘 �
�������

= �
���

�������
,   (20) 

where A is the cross-sectional area [mm2], δ is the 
thickness [m], L is half the height of the cubic model 
[mm], r0 is the radius of the solid particle [mm], and Rtotal 
is the total thermal resistance [K/W] and  �

������
=

�
�����

+ �
��
+ �

��
+ �

��
, where Ri is the thermal resistance 

of the i-th segment [K/W], R5 is the contact resistance 
[K/W]. 

2.8 The model of Liu et al. [11] 

Liu et al. [11] proposed a modified series-parallel model 
applicable to clayey clays. It is based on soil parameters 
such as water content, dry density, degree of saturation 
Sr and porosity n. For silty clays, apart from the critical 
water content, the model is as follows: 
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𝑘𝑘 = (𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘�)�.�� ∙ � �

���
��

���
��

���
��

�
�

�.��

+

0.75𝑆𝑆� + 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵� + 𝐶𝐶𝐶𝐶� + 𝐷𝐷𝐷𝐷 + 𝐹𝐹, (21) 

where ρd is the dry density [kg/m3], A, B, C, D, F are 
empirical coefficients. The equation for calculating the 
thermal conductivity takes the form 

𝑘𝑘 = (𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘�)�.�� ∙ � �

���
��

���
��

���
��

�
�

�.��

+

0.75𝑆𝑆� − 14.56𝑤𝑤 − 7.57𝜌𝜌� + 9.92𝑆𝑆� + 7.67  (22) 

when the water content in the silty clays exceeds the 
critical water content. 

2.9 The model of Bi et al. [13] 

Bi et al. [13] presented a generalized model for 
calculating the thermal conductivity of frozen soils, 
taking into account soil components and the frost wave 
that occurs during soil freezing. The soil freezing 
process has been divided into three stages for which 
generalized mixed models have been developed, and 
these are a function of still water content, frost heave, 
porosity and initial water content. The model assumes 
that there are both series and parallel connections 
between water and ice. In stage 1 there is no frost wave 
and the ground consists of a solid part, air, water and ice. 
Stage 2 is a critical state where the pores of the soil are 
filled only with unfrozen water and ice. There is no frost 
wave here. In stage 3 there is a frost wave and the ground 
consists of a solid part, water and ice. The generalized 
model takes the form: 

𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

𝑘𝑘
�����                                           �������������� ���

(���)

𝑘𝑘�������                   𝜃𝜃� = 𝜃𝜃����� = 𝑓𝑓�� − ���
(���)

𝑘𝑘�������                  𝜃𝜃� < 𝜃𝜃����� = 𝑓𝑓�� − ���
(���)

, 

(23) 

where 𝑘𝑘������ � = ϗ𝑘𝑘������ �
� + (1 − ϗ)𝑘𝑘������ �

� , where 
kf-etap i is the thermal conductivity of frozen soils in 
individual stages [W/mK], 𝑘𝑘������ �

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘�����  �
�  is the 

thermal conductivity of frozen soils in individual stages, 
assuming that ice and non-frozen water are arranged 
parallel and in series, respectively [W/mK], ϗ is a 
weighing parameter and is in the range <1, 1> and 

𝑘𝑘�����
� = 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� +

(1 − 𝜂𝜂) ����
��

+ (�������)�

�����������
+ ���

��
�

��
 (24) 

where kp
f-etap1 is the thermal conductivity of frozen land 

in stage 1 for the condition that ice and water are parallel 
[W/mK], ki is the thermal conductivity of ice [W/mK], 
fs1, fw1, fi1, fa1 are the volume fractions of solid, water, 
ice, and air, respectively, in step 1 and are: 

𝑓𝑓�� = 𝑓𝑓��, 𝑓𝑓�� = 𝜃𝜃�, 𝑓𝑓�� = ℎ(𝑓𝑓�� − 𝜃𝜃�), 𝑓𝑓�� =
𝑓𝑓�� − (ℎ − 1)(𝑓𝑓�� − 𝜃𝜃�),     (25) 

where θu is the volumetric content of the non-frozen 
water and h is the expansion parameter of the water-ice 
phase transition and h=ρw/ρi., 

𝑘𝑘�������
� = 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂(𝑓𝑓�� + 𝑓𝑓��)� ����

��
+ ���

��
�

��
+

𝜂𝜂𝜂𝜂��𝑘𝑘� + (1 − 𝜂𝜂) ����
��

+ ���
��

+ ���
��

+ ���
��

�
��

,  (26) 

𝑘𝑘�������
� = 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� + (1 −

𝜂𝜂) ����
��

+ (�������)�

�����������
�

��
,   (27) 

𝑘𝑘�������
� = 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂(𝑓𝑓�� + 𝑓𝑓��)� ����

��
+ ���

��
�

��
+

(1 − 𝜂𝜂) ����
��

+ ���
��

+ ���
��

�
��

,  (28) 

where: 

𝑓𝑓�� = 𝑓𝑓��, 𝑓𝑓�� = 𝜃𝜃�����, 𝑓𝑓�� = ℎ(𝑓𝑓�� − 𝜃𝜃�����), 
gdzie 𝜃𝜃����� = 𝑓𝑓�� − ���

(���)
,   (29) 

where 𝜃𝜃����� is the critical volume of unfrozen water in 
step 2,   

𝑘𝑘�������
� = ������

���
+ ������

���
+ ������

���
+ (1 −

𝜂𝜂) � ���
(���)��

+ (�������)�

(���)�����������
�

��
,   (30) 

𝑘𝑘�������
� = ������

���
+ �(�������)�

���
����

��
+ ���

��
�

��
+

(1 − 𝜂𝜂) � ���
(���)��

+ ���
(���)��

+ ���
(���)��

�
��

 (31) 

where: 

𝑓𝑓�� = 𝑓𝑓��, 𝑓𝑓�� = (1 + 𝜀𝜀)𝜃𝜃�,  𝑓𝑓�� = ℎ[𝑓𝑓�� − (1 +
𝜀𝜀)𝜃𝜃�],  (32) 

where ε is a frost wave and fs3+fw3+fi3=1+ε.  

3 Conclusions 
The work presents 9 mixed models for calculating the 
thermal conductivity of soils. Despite the availability of 
many models described in the literature, there is no 
universal model that would be universally applicable. 
The above list, however, will make it easier to find a 
model that can be adapted to the specific analyzed case. 
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𝑘𝑘 = (𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘�)�.�� ∙ � �

���
��

���
��

���
��

�
�

�.��

+

0.75𝑆𝑆� + 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵� + 𝐶𝐶𝐶𝐶� + 𝐷𝐷𝐷𝐷 + 𝐹𝐹, (21) 

where ρd is the dry density [kg/m3], A, B, C, D, F are 
empirical coefficients. The equation for calculating the 
thermal conductivity takes the form 

𝑘𝑘 = (𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘� + 𝑓𝑓�𝑘𝑘�)�.�� ∙ � �

���
��

���
��

���
��

�
�

�.��

+

0.75𝑆𝑆� − 14.56𝑤𝑤 − 7.57𝜌𝜌� + 9.92𝑆𝑆� + 7.67  (22) 

when the water content in the silty clays exceeds the 
critical water content. 

2.9 The model of Bi et al. [13] 

Bi et al. [13] presented a generalized model for 
calculating the thermal conductivity of frozen soils, 
taking into account soil components and the frost wave 
that occurs during soil freezing. The soil freezing 
process has been divided into three stages for which 
generalized mixed models have been developed, and 
these are a function of still water content, frost heave, 
porosity and initial water content. The model assumes 
that there are both series and parallel connections 
between water and ice. In stage 1 there is no frost wave 
and the ground consists of a solid part, air, water and ice. 
Stage 2 is a critical state where the pores of the soil are 
filled only with unfrozen water and ice. There is no frost 
wave here. In stage 3 there is a frost wave and the ground 
consists of a solid part, water and ice. The generalized 
model takes the form: 

𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧

𝑘𝑘
�����                                           �������������� ���

(���)

𝑘𝑘�������                   𝜃𝜃� = 𝜃𝜃����� = 𝑓𝑓�� − ���
(���)

𝑘𝑘�������                  𝜃𝜃� < 𝜃𝜃����� = 𝑓𝑓�� − ���
(���)

, 

(23) 

where 𝑘𝑘������ � = ϗ𝑘𝑘������ �
� + (1 − ϗ)𝑘𝑘������ �

� , where 
kf-etap i is the thermal conductivity of frozen soils in 
individual stages [W/mK], 𝑘𝑘������ �

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑘𝑘�����  �
�  is the 

thermal conductivity of frozen soils in individual stages, 
assuming that ice and non-frozen water are arranged 
parallel and in series, respectively [W/mK], ϗ is a 
weighing parameter and is in the range <1, 1> and 

𝑘𝑘�����
� = 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� +

(1 − 𝜂𝜂) ����
��

+ (�������)�

�����������
+ ���

��
�

��
 (24) 

where kp
f-etap1 is the thermal conductivity of frozen land 

in stage 1 for the condition that ice and water are parallel 
[W/mK], ki is the thermal conductivity of ice [W/mK], 
fs1, fw1, fi1, fa1 are the volume fractions of solid, water, 
ice, and air, respectively, in step 1 and are: 

𝑓𝑓�� = 𝑓𝑓��, 𝑓𝑓�� = 𝜃𝜃�, 𝑓𝑓�� = ℎ(𝑓𝑓�� − 𝜃𝜃�), 𝑓𝑓�� =
𝑓𝑓�� − (ℎ − 1)(𝑓𝑓�� − 𝜃𝜃�),     (25) 

where θu is the volumetric content of the non-frozen 
water and h is the expansion parameter of the water-ice 
phase transition and h=ρw/ρi., 

𝑘𝑘�������
� = 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂(𝑓𝑓�� + 𝑓𝑓��)� ����

��
+ ���

��
�

��
+

𝜂𝜂𝜂𝜂��𝑘𝑘� + (1 − 𝜂𝜂) ����
��

+ ���
��

+ ���
��

+ ���
��

�
��

,  (26) 

𝑘𝑘�������
� = 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� + 𝜂𝜂𝜂𝜂��𝑘𝑘� + (1 −

𝜂𝜂) ����
��
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�
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,   (27) 

𝑘𝑘�������
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��
�
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+
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��
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,  (28) 

where: 

𝑓𝑓�� = 𝑓𝑓��, 𝑓𝑓�� = 𝜃𝜃�����, 𝑓𝑓�� = ℎ(𝑓𝑓�� − 𝜃𝜃�����), 
gdzie 𝜃𝜃����� = 𝑓𝑓�� − ���

(���)
,   (29) 

where 𝜃𝜃����� is the critical volume of unfrozen water in 
step 2,   

𝑘𝑘�������
� = ������

���
+ ������

���
+ ������

���
+ (1 −
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+
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where: 

𝑓𝑓�� = 𝑓𝑓��, 𝑓𝑓�� = (1 + 𝜀𝜀)𝜃𝜃�,  𝑓𝑓�� = ℎ[𝑓𝑓�� − (1 +
𝜀𝜀)𝜃𝜃�],  (32) 

where ε is a frost wave and fs3+fw3+fi3=1+ε.  

3 Conclusions 
The work presents 9 mixed models for calculating the 
thermal conductivity of soils. Despite the availability of 
many models described in the literature, there is no 
universal model that would be universally applicable. 
The above list, however, will make it easier to find a 
model that can be adapted to the specific analyzed case. 
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