A comprehensive model of $NO_{x}\xspace$ and $SO_{2}\xspace$ emissions from advanced coal combustion in a complex geometry CLC equipment

Jaroslaw Krzywanski1*, Tomasz Czakiert², Anna Zylka¹, Kamil Idziak², Karol Sztekler and Wojciech Nowak³

¹Jan Dlugosz University in Czestochowa; A. Krajowej 13/15, 42-200 Czestochowa, Poland ²Czestochowa University of Technology, Dabrowskiego 73, 42-200 Czestochowa, Poland ³AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Cracow, Poland

Abstract. The paper describes experiences in the modeling of complex geometry CLC equipment. The facility consists of two reactors: the air reactor and the fuel reactor. The fuzzy logic (FL) methods are used in the study for the prediction of NO_x and SO_2 from the solid fuels combustion in CLC equipment. Maximum errors between measured and predicted results are lower than 10 %.

1 Introduction

Fluidized bed technology is a convenient method for co-firing of coal and biomass [1,2]. Different combustion atmospheres can be applied in such systems, including air-firing mode and oxy-combustion conditions [3–5], generating flue gas, mainly composed of CO₂ and H₂O, which is almost suitable for geological storage [6,7]. Similar applies to CLC and CLOU technologies [6,8]. However, since solid fuels contain nitrogen and sulfur, NO_x and SO₂ emissions should be considered before this combustion technology is put into practice [7,9,10].

The manuscript demonstrates an application of the Fuzzy Logic approach as one of the leading artificial intelligence methods [11–14] to predict NO_x and SO_2 emissions from CLC equipment. The performed model was successfully validated against experimental results.

2 Experiments

The necessary data were acquired from experiments carried out on a hot CLC facility at Czestochowa University of Technology, Poland [15,16]. The unit consists of two reactors: an air reactor and a fuel reactor (Figure 1). A detailed description of the system can be found elsewhere [8,15,17]. The experiments were conducted using coal and biomass as a renewable energy source [18–21], described in Table 1.

Different operating conditions are considered in this study, i.e., Test 0 (air-fired conditions), Test 1 (O_2/CO_2 mode) Tests 2 – 6 (CLC and CLOU) conditions. Detailed characteristics of all OCs used in the study can be found in [7].

Fig. 1. The hot CLC facility.

Different operating conditions are considered in this study, i.e., Test 0 (air-fired conditions), Test 1 (O_2/CO_2 mode) Tests 2 – 6 (CLC and CLOU) modes. Various kinds of OCs are taken into account, ilmenite (OC1) in Tests 2, 5, and 6, copper oxide (60% wt.) with the supports (OC2, OC3) in Tests 3 and 4. Detailed characteristics of all OCs used in the study can be found in [7].

^{*} Corresponding author: j.krzywanski@ujd.edu.pl

Fuel		coal	biomass	
LHV MJ kg ⁻¹		26.16	17.25	
t., %	М	6.6	6.2	
alysis/w	V.M.	35.7	77.0	
Proximate an	А	5.5	1.4	
	F.C. ^{by diff.}	52.2	15.4	
Ultimate analysis/wt., %	С	68.2	47.7	
	Н	4.90	5.47	
	S	1.02	0.11	
	Ν	1.01	0.27	
	O ^{by diff.}	12.77	38.85	

Table 1. Fuel's characteristics.

3 Results

The Qtfuzzylite fuzzy logic control application was used to develop the model [22–24].

The following input parameters are employed to develop the model:

- ID_{mode} tag defining the combustion mode,
- the kind of oxygen carrier OC,
- oxygen excess OE,
- average fuel reactor temperature T,
- F.C.^{ad} / V.M.^{ad} ratio, and N^{ad}/C^{ad} molar ratio,
- sulfur S^{ad} and ash A^{ad} contents in the fuel,
- ID_{fuel} tag, defining the kind of fuel.

Such selected input variables allow describing the outputs in the developed FL-based model [19,25]. The model uses triangular and constant terms for inputs and outputs, respectively [26].

The validation procedure was successfully performed on the hot facility [27] (Table 2).

Table 2	. Comparison	of calculated a	and experimental results
---------	--------------	-----------------	--------------------------

Test		SO ₂	NOx	SO ₂	NOx	EF	RR
		ex	кр.	ca	lc.	NOx	SO ₂
		pr	m	pp	m	%	6
Test 0	-	627	393	595	371	5.1	5.6
Test 1	-	843	379	769	351	8.8	7.4
Test 2	OC1	85	56	77	56	9.4	0.0
Test 3	OC2	40	116	42	106	-5.0	8.6

https://doi.org/10.	1051/e3sconf	/202132300019
---------------------	--------------	---------------

Test 4	OC3	61	176	56	173	8.2	1.7
Test 5	OC1	21	57	20	62	4.8	-8.8
Test 6		8	125	8	114	0.0	8.8

Comparing measured and predicted SO_2 and NO_x emissions revealed that the maximum relative error is lower than 10 %. This confirms the good accuracy of the model, allowing for the correct prediction of the emission of sulfur and nitrogen oxides.

4 Conclusions

A comprehensive FL-based model was shown in this paper for NO_x and SO₂ prediction from coal and biomass combustion under different combustion modes. Airfired, oxyfuel, CLOU, and iG-CLC conditions are considered in the study. The model's accuracy was successfully confirmed by the validation process. with the maximum error below 10 %.

Scientific work was performed within project No. 2018/29/B/ST8/00442, "Research on sorption processes intensification methods in modified construction of adsorbent beds", supported by National Science Center, Poland. The support is gratefully acknowledged.

References

- D. R. McIlveen-Wright, F. Pinto, L. Armesto, M. A. Caballero, M. P. Aznar, A. Cabanillas, Y. Huang, C. Franco, I. Gulyurtlu, and J. T. McMullan, Fuel Processing Technology 87, 793 (2006)
- W. Muskała, J. Krzywański, R. Sekret, and W. Nowak, Chemical and Process Engineering -Inzynieria Chemiczna i Procesowa 29, 473 (2008)
- T. Klajny, J. Krzywanski, and W. Nowak, in Proceeding of the 6th Internationa Symposium on Coal Combustion (Huazhong Univ Sci Technol, Wuhan, Peoples R. China, Dec 01-04 2007, 2007), pp. 148–153
- K. Idziak, T. Czakiert, J. Krzywanski, A. Zylka, M. Kozlowska, and W. Nowak, Fuel 268, 117245 (2020)
- A. Abad, P. Gayán, F. García-Labiano, L. F. de Diego, and J. Adánez, Fuel Processing Technology 171, 78 (2018)
- I. Majchrzak-Kucęba and D. Wawrzyńczak, *Advanced CO2 Capture Technologies for Clean Coal Energy Generation* (Publishing Office of Czestochowa University of Technology, Częstochowa, 2016)
- T. Czakiert, Spalanie Paliw Stałych w Układach z Pętlą Chemiczną (Solid Fuels Combustion in Chemical Looping Systems) (Wydawnictwo Politechniki Częstochowskiej, 2019)
- A. Zylka, J. Krzywanski, T. Czakiert, K. Idziak, M. Sosnowski, K. Grabowska, T. Prauzner, and W. Nowak, Fuel 255, 115776 (2019)
- 9. J. Krzywanski, T. Czakiert, T. Shimizu, I. Majchrzak-Kuceba, Y. Shimazaki, A. Zylka, K.

Grabowska, and M. Sosnowski, Energy Fuels **32**, 6355 (2018)

- J. Krzywański and W. Nowak, Journal of Power Technologies 97, 75 (2017)
- J. Krzywanski, K. Grabowska, M. Sosnowski, A. Zylka, K. Sztekler, W. Kalawa, T. Wojcik, and W. Nowak, Thermal Science 23, 1053 (2019)
- 12. T. J. Ross, *Fuzzy Logic with Engineering Applications*, 3rd ed (John Wiley, Chichester, U.K, 2010)
- 13. J. Krzywanski, Energies 12, 4441 (2019)
- J. Krzywanski, K. Grabowska, M. Sosnowski, A. Żyłka, K. Sztekler, W. Kalawa, T. Wójcik, and W. Nowak, MATEC Web of Conferences 240, 1 (2018)
- J. Krzywanski, A. Żyłka, T. Czakiert, K. Kulicki, S. Jankowska, and W. Nowak, Powder Technology 316, 592 (2017)
- J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, and L. F. de Diego, Progress in Energy and Combustion Science 38, 215 (2012)
- K. Idziak, T. Czakiert, J. Krzywanski, A. Zylka, and W. Nowak, J. Energy Resour. Technol 142, (2020)
- I. Adánez-Rubio, A. Pérez-Astray, T. Mendiara, M. T. Izquierdo, A. Abad, P. Gayán, L. F. de Diego, F. García-Labiano, and J. Adánez, Fuel Processing Technology **172**, 179 (2018)
- 19. M. L. de Souza-Santos, Energy 120, 959 (2017)
- Q. Liu, W. Zhong, J. Gu, and A. Yu, Powder Technology **373**, 522 (2020)
- 21. L. Zhou, K. Deshpande, X. Zhang, and R. K. Agarwal, Energy **195**, 116955 (2020)
- 22. M. Sosnowski, J. Krzywanski, and R. Scurek, Entropy **21**, 1047 (2019)
- 23. J. Krzywanski, Entropy 21, 919 (2019)
- 24. J. Krzywanski, D. Urbaniak, H. Otwinowski, T. Wylecial, and M. Sosnowski, Materials **13**, 3303 (2020)
- J. Krzywanski, A. Blaszczuk, T. Czakiert, R. Rajczyk, and W. Nowak, in (CFB-11: Proceedings of the 11th International Conference on Fluidized Bed Technology, 2014), pp. 619– 624
- M. R. H. Mohd Adnan, A. Sarkheyli, A. Mohd Zain, and H. Haron, Artif Intell Rev 43, 345 (2015)
- A. Żyłka, J. Krzywański, T. Czakiert, K. Idziak, K. Kulicki, S. Jankowska, and W. Nowak, E3S Web of Conferences 13, 04002 (2017)