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Abstract. A new method for thermal calculations of the cross-flow tube heat exchangers was proposed. 
The temperature of both fluids and the wall temperature are determined. The heat exchanger is divided into 
control volumes, in which outlet fluid temperatures are calculated by closed analytical formulas. Two 
examples of the application of the method for the calculation of two-pass cross-co-current and cross-counter-
current superheaters were presented. An exact analytical model was also developed for both superheaters to 
estimate the accuracy of the proposed method. The results of the superheater calculations using the 
developed method are in good agreement with the results obtained by the exact analytical models. The 
proposed method can be used to calculate heat exchangers with a complicated flow system in which the 
physical properties of fluids are temperature-dependent..

1 Introduction 
Heat exchangers are among the most common apparatus 
both in industry and in building heating systems [1]. The 
book by Shah and Sekulić describes theoretical 
calculation methods and experimental investigations of 
compact heat exchangers taking into account fouling 
processes on their heating surfaces.  
 Cross-flow tube heat exchangers are one of the most 
widely used heat exchangers in various branches of 
industry as well as in air-conditioning systems and heat 
pumps [2]. 
The construction and flow systems of the heat 
exchangers are often complex and methods for thermal 
calculations of such heat exchangers are lacking. 
Relationships for calculating the logarithmic mean 
temperature difference between the fluids or their 
effectiveness are available in the literature only for 
typical flow systems of these heat exchangers [3]. 
Therefore, numerical or semi-analytical methods must 
be developed for the calculation of such exchangers, in 
particular when the specific heat of the fluids is 
temperature dependent and the flow arrangement of a 
tube heat exchanger is complex.  
Numerical modelling and experimental studies of 
tubular cross-current heat exchangers are presented in 
[4]. The numerical modelling method of PFTHE is 
presented in [5]. The finite-difference method was used 
to determine the water and air temperature of a two-pass 
car radiator with two rows of tubes. The numerical 
model of the radiator developed in [5] was used in the 
simultaneous determination of heat transfer correlations 
on the air and water side of the car radiator in [6]. The 
air and water temperatures at the control volume nodes 
are determined from solving a system of non-linear 
algebraic equations using the Gauss-Seidel method. The 
number of iterations needed to obtain a solution with 
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satisfactory accuracy is sometimes large and reaches 
several thousand. A characteristic feature of the 
numerical modelling method for tube heat exchangers 
developed in [5] is the arithmetic averaging of the flue 
gas temperature over the thickness of one row of tubes. 
Arithmetic averaging at larger gas temperature 
differences over the width of one tube row can lead to 
small errors in the determined fluid temperatures of the 
order of 1-2% compared to the exact analytical solution. 
Taler proposed integer averaging of the gas temperature 
over the thickness of one row of tubes to improve the 
accuracy of numerical modelling of cross-flow tube heat 
exchangers [6].  
Numerical study on the heat transfer and pressure drop 
characteristics of fin-and-tube surface with four round-
convex strips around each tube was carried out by Li et 
al. [7]. Different turbulence models give different results 
in CFD modelling. Therefore, some parameters in heat 
exchanger models based on CFD modelling must be 
adjusted using experimental studies of the heat 
exchangers. 
The Particle-Resolved Direct Numerical Simulations 
(PR-DNS) were used for low-temperature densely 
packed beds [8]. The results of calculations using DNS 
agree well with the experimental results, but the 
computer calculation time is very long. It is to be 
expected that as the computing power of computers 
increases, this method will also find application for 
modelling flow and heat transfer in tubular cross-current 
exchangers.  
In this paper, a new non-iterative calculation method for 
cross-co-current heat exchangers will be presented. The 
entire heat exchanger is divided into finite volumes. The 
temperatures of the two fluids at the outlet of the control 
volume are calculated using simple analytical formulas. 
This avoids the need to solve a system of non-linear 
algebraic equations to calculate the temperatures at the 
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nodes of the finite volumes. The dependence of the 
physical properties of fluids on temperature and 
pressure can be easily taken into account in the proposed 
method. The method is suitable for the calculation of 
cross-current heat exchangers made of plain tubes, 
individually finned tubes, and PFTHE. It is also a fast 
and simple method for calculating high-temperature 
exchangers such as steam superheaters in sub and 
supercritical power boilers. 

2 A new method for thermal 
calculations of cross-flow tube heat 
exchangers  
A new numerical-analytical method for modeling tube 
cross-co-current and tube cross-counter-current heat 
exchangers is presented. All tubes in a heat exchanger 
of length xL  are divided into finite volumes of length 

ix . The length of a control volume is 

1i i ix x x   , m   (1) 
The total length of all control volumes must be equal to 
the length of the pipe xL . 

1

n

i x
i

x L


  , m    (2) 

In the case of control volumes of equal length, the finite 
volume length is 

xL
x

n
  , m     (3) 

The transverse pitch of the tube arrangement in the 
exchanger is 1p , and the longitudinal 2p . The tube heat 
exchanger has a discrete structure, characterized by 
heating or cooling of the fluid flowing transversely 
through the tubes while the gas flows outside 
perpendicularly to the tube axis. It is assumed that there 
is no heat flow between finite volumes in the region of 
the fluid flowing perpendicularly to the tube axis. To 
simplify the mathematical analysis of the tube heat 
exchanger, it is assumed that the fluid temperature 
changes across the entire width of the pitch 2p in the 
direction perpendicular to the tube axis (Figure 1). 
 

 
Fig. 1. Finite volume with length ix  and width equal to 2p
. 

The mass flow rate of the fluid flowing inside the tube 
is sm and the mass flow rate of the fluid flowing 
transversely through the finite volume is ,g im   

, 1 , 1 1 , 1g i i i g i i i g im p x w p x w       , kg/s  (4) 
In the case of equal lengths, the mass flow rate ,g im   of 
gas through the finite volumes is 

,
g

g i
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
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where gm is the gas mass flow rate per tube flowing 
through the cross section of 1 xp L .  
The heat flow rate transferred from the hot to the cold 
fluid within one finite volume 1i ix x x   is calculated 
assuming that the average temperature of the fluid inside 
the tube is approximated by the arithmetic mean of the 
fluid inlet and outlet temperatures of the control volume 

, , 1
, 2

s i s i
s i

T T
T 

 , oC    (6) 

Normally, a fluid flow rate inside the tubes is high and 
the temperature changes along its length ix  are small. 
The gas temperature varies over a width of one pitch 2p
from temperature ,g iT   to ,g iT   (Figure 1). The symbol ,s iT  
in Eq. (6) denotes the average temperature of the fluid 
inside the tube within a control area of length ix . The 
gas (flue gas) temperature is assumed to be higher than 
the temperature of the liquid or gas flowing inside the 
tubes.  
The following assumptions were made to model heat 
transfer in the heat exchanger: 

 the thermophysical properties of both fluids 
can be temperature-dependent, 

 the temperature of the fluid in the tube changes 
only in the direction of its flow, 

 the temperature of the fluid flowing 
perpendicular to the tube axis changes both in 
the direction of its flow and along the tubes,  

 the heat transfer coefficient (HTC) and overall 
HTC ik  may be different on each row of tubes 
and may vary along the length of the tube. 

The energy conservation equation for an elementary 
control region of dimensions ix y  has the following 
form 

 , , 0 ,

, , 0

g y

g y y

T
g i p g i g y i i g y s i

T
g i p g i g y y

m c T k x y T T

m c T



    

 




(7) 

By introducing the average specific heat of gas ,pg ic in 

the temperature interval from g y yT   to g yT , which is 
given by the formula 

, 0 , 0

,

g y y g yT T
p g i g y y p g i g y

p g i
g y y g y

c T c T
c

T T











  (8) 

Eq. (7) can be written in the form 

   , , , 0g i p g i g y g y y i i s i g ym c T T k x y T T      

(9) 
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nodes of the finite volumes. The dependence of the 
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
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Eq. (7) can be written in the form 

   , , , 0g i p g i g y g y y i i s i g ym c T T k x y T T      
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Writing Eq. (9) in the form 

 , , 0
g y y g y

g p g i i i g y s i

T T
m c k x T T

y
 
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

  (10) 

and assuming that 0y  give 

   , , 0g
g i p g g i i g s i

T
m c T k x T T

y


    


  (11)  

The differential Eq. (11) was solved by the method of 
separation of variables with the following boundary 
condition (Figure 2) 

0 ,g y g iT T     (12) 
Assuming that the specific heat capacity of the gas 
inside the control volume can be approximated by the 
following formula 

   , ,
, 2

p g g i p g g i
p g i

c T c T
c

 
    (13) 

To avoid iterations it can be assumed that the specific 
heat of the medium g in a given finite volume is 

 , ,p g i p g g ic c T  instead of calculating the average 
specific heat over a single tube row using the expression 
(13). Eq. (11) can be written in the form 

   ,
,

, ,

g s i i i
g s i

g i pg i

T T k x
T T

y m c
  

  
  

 (14) 

Eqs (11) and (14) are identical because the average 
temperature of the fluid inside the tube at the i-th control 
area is constant. 
After separating the variables, Eq. (14) takes the 
following form 

 
 

,

, ,,

s i g i i

g i pg is i g

T T k x
y

m cT T

  
  

 
  (15) 

Two-sided integration of Eq. (15) gives 
 ,

, , ,

s i g i i

s i g g i pg i

T T k x
y C

T T m c
  

   
  

 (16) 

 ,
, ,

ln i i
s i g

g i pg i

k x
T T y C

m c


   
 

  (17) 

The solution of Eq. (17) can be written as 

,
, ,

exp exp i i
s i g

g i pg i

k x
T T C y

m c
 

     
 (18) 

Denoting 1 expC C , the expression (18) takes the 
form 

, 1
, ,

exp i i
g s i

g i pg i

k x
T T C y

m c
 

     
  (19) 

Considering the boundary condition (12), the following 
is obtained 

1 , ,s i g iC T T      (20) 
After substituting (20) into (19), the expression 
describing the gas temperature distribution over the 
width of one longitudinal pitch 2p is obtained  

 , , ,
, ,

exp i i
g s i s i g i

g i pg i

k x
T T T T y

m c
       

, 20 y p 

     (21) 

The gas temperature ,g iT  at the outlet from the control 
volume is obtained by substituting 2y p  into Eq. (21) 

  2
, , , ,

, ,

exp i i
g i s i s i g i

g i pg i

k x p
T T T T

m c
        

,  1,...,i n

     (22) 
The heat transfer surface area iA  for a single control 
volume is 

2i iA p x      (23) 
In a tube heat exchanger, the area of the outside surface 
of a tube of length ix  is 

out out iA P x      (24) 
The outer circumference of the tube is out outP d , and 
the area of the tube in the control volume for a heat 
exchanger made of round tubes with an outer diameter 

outd  is 

,out i out iA d x     (25) 
After substituting the expression 2 ip x  in formula (22) 
by expression (25), we obtain 

   , , , , ,expg i s i s i g i g iT T T T N      (26) 
where:  

,
,

, ,

i out i
g i

g i pg i

k A
N

m c


 
 

,  , , 1
, 2

s i s i
s i

T T
T 

   (27) 

If the specific heat pgc  and the velocity of the gas in 
front of the tube is constant along the length of the tube, 
then Eq. (27) is 

out out
g

g pg

k A
N

m c
 


   (28) 

Eq. (26) is used in the numerical model of the heat 
exchanger to calculate the gas temperature behind a 
given tube row. The gas temperature ,g iT  at the outlet of 
the control volume is calculated from Eq. (26) in the 
iterative calculation procedure. The temperature ,g iT   
and temperature ,s iT  are known in each control (finite) 
volume. The temperature of the gas ,g iT   and the 
temperature of the fluid flowing in the tube  , 1s iT  at the 
outlet of the control volume are sought. The temperature 

, 1s iT  of the fluid flowing inside the tube is not known 
and is calculated iteratively. First, the temperature , 1s iT 

at the outlet of the control volume is taken and the 
average temperature ,s iT and heat flow rate ,s iQ   
absorbed by the fluid flowing inside the tubes are 
calculated 

, , , 1 ,( )s i s ps i s i s iQ m c T T      (29) 
The gas temperature ,g iT  at the outlet of the control 

volume, and the heat flow rate ,g iQ  are then calculated 
using Eq. (26) 

, , , , ,( )g i out i out i g i s iQ k A T T      (30) 
The temperature , 1s iT  is chosen so that the following 
condition is achieved 
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, , , 0Q i s i g iQ Q        (31) 
The disadvantage of the iterative procedure for 
determining temperatures ,g iT   and , 1s iT  is the large 
computer computation time. 
In this paper, a new method for determining 
temperatures ,g iT  and , 1s iT  which does not require 
iterative calculations, is presented. The linear algebraic 
Eq. (31) is solved for , 1s iT   in each control volume. 
Substituting Eqs (29) and (30) into Eq. (31) yields 

, , 1 , , , , ,( ) ( )s ps i s i s i out i out i g i s im c T T k A T T      (32) 

where  , , , 1 / 2s i s i s iT T T   . 

The average temperature ,g iT  of the gas over the width 
of one transverse pitch 2p is given by 

 

2

2

, ,
2 0

,
, , ,

2 , ,0

1 ( )

1 exp

p

g i g i

p
out i i

s i s i g i
g i pg i

T T y dy
p

k x
T T T y dy

p m c



  
         



 

  (33) 

After calculating the integral in formula (33), we get 

 
2

, 2 , , ,
2

, , 2 ,

, 2 , , 0

1
g i s i s i g i

p

g i pg i out i i

out i i g i pg i

T p T T T
p

m c p k x
y

k x p m c

   
               





      (34) 

Transforming Eq. (34) gives 

, , , ,
,

, , 1
, , ,

,

1( ) 1 exp( )

1 1 exp( )
2

g i s i g i g i
g i

s i s i
s i g i g i

g i

T T T N
N

T T
T T N

N


        
 

         

(35) 

After substituting the expression (35) for the average 
flue gas temperature ,g iT into Eq. (32), we obtain the 
following linear algebraic equation for , 1s iT   

, , 1
, , 1 , , , , ,

,

1( ) 1 exp( )
2

s i s i
s ps i s i s i out i out i g i g i

g i

T T
m c T T k A T N

N




 
           



   (36) 
After successive transformations of Eq. (36) we obtain 

 ,
, , , ,

,
, 1

,
,

,

2 2 1 exp( )

2 1 exp( )

g i
s i g i s i g i

s i
s i

g i
g i

s i

N
T T T N

N
T

N
N

N




      




    

, 

1,...,i n     (37) 
 The number of heat transfer units ,s iN in the finite 
volume i is given by the formula 

 , , , ,/s i out i out i s ps iN k A m c     where mean specific heat 

can be calculated using , ,ps i ps ic c . 
In the calculation of the whole heat exchanger, the 
temperature , 1s iT  is first calculated in each finite 
volume. The average temperature of the fluid flowing 
inside the tubes along the length of one control volume 

 , , , 1 / 2s i s i s iT T T    is then calculated. Knowing the 

temperature ,s iT  the flue gas temperature ,g iT  is 
determined using Eq. (26). In the proposed method, no 
iteration is used, so it is very fast. Simple analytical 
formulas (26) and (37) are used to calculate the 
temperature of the fluids at the outlets of the control 
volume. 

3 Numerical-analytical models of the 
cross-co-current and cross-counter-
current superheater 
The application of the developed method will be 
illustrated by the example of determining the 
distribution of steam and flue gas temperatures in two-
speed superheaters, the first of which is a cross-flow 
exchanger (Fig. 2a), and the second of which is a cross-
current exchanger (Fig. 2b). The results of calculations 
using the numerical-analytical method presented will be 
compared with the results of calculations obtained using 
exact analytical formulae. 
 

a)

 
 
b)

 
Fig. 2. Flow diagram of a two-pass cross-flow steam 
superheater; a) cross-co-current superheater, b) cross-counter-
current superheater. 
 
The advantage of the cross-co-current heat exchanger is 
the lower maximum superheater tube wall temperature 
compared to the cross-counter-current heat exchanger, 
but its thermal efficiency is slightly lower than that of 
the cross-counter-current heat exchanger. 
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, , , 0Q i s i g iQ Q        (31) 
The disadvantage of the iterative procedure for 
determining temperatures ,g iT   and , 1s iT  is the large 
computer computation time. 
In this paper, a new method for determining 
temperatures ,g iT  and , 1s iT  which does not require 
iterative calculations, is presented. The linear algebraic 
Eq. (31) is solved for , 1s iT   in each control volume. 
Substituting Eqs (29) and (30) into Eq. (31) yields 

, , 1 , , , , ,( ) ( )s ps i s i s i out i out i g i s im c T T k A T T      (32) 

where  , , , 1 / 2s i s i s iT T T   . 

The average temperature ,g iT  of the gas over the width 
of one transverse pitch 2p is given by 
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After calculating the integral in formula (33), we get 

 
2

, 2 , , ,
2

, , 2 ,

, 2 , , 0

1
g i s i s i g i

p

g i pg i out i i

out i i g i pg i

T p T T T
p

m c p k x
y

k x p m c

   
               





      (34) 

Transforming Eq. (34) gives 
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After substituting the expression (35) for the average 
flue gas temperature ,g iT into Eq. (32), we obtain the 
following linear algebraic equation for , 1s iT   
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After successive transformations of Eq. (36) we obtain 
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 The number of heat transfer units ,s iN in the finite 
volume i is given by the formula 

 , , , ,/s i out i out i s ps iN k A m c     where mean specific heat 

can be calculated using , ,ps i ps ic c . 
In the calculation of the whole heat exchanger, the 
temperature , 1s iT  is first calculated in each finite 
volume. The average temperature of the fluid flowing 
inside the tubes along the length of one control volume 

 , , , 1 / 2s i s i s iT T T    is then calculated. Knowing the 

temperature ,s iT  the flue gas temperature ,g iT  is 
determined using Eq. (26). In the proposed method, no 
iteration is used, so it is very fast. Simple analytical 
formulas (26) and (37) are used to calculate the 
temperature of the fluids at the outlets of the control 
volume. 

3 Numerical-analytical models of the 
cross-co-current and cross-counter-
current superheater 
The application of the developed method will be 
illustrated by the example of determining the 
distribution of steam and flue gas temperatures in two-
speed superheaters, the first of which is a cross-flow 
exchanger (Fig. 2a), and the second of which is a cross-
current exchanger (Fig. 2b). The results of calculations 
using the numerical-analytical method presented will be 
compared with the results of calculations obtained using 
exact analytical formulae. 
 

a)

 
 
b)

 
Fig. 2. Flow diagram of a two-pass cross-flow steam 
superheater; a) cross-co-current superheater, b) cross-counter-
current superheater. 
 
The advantage of the cross-co-current heat exchanger is 
the lower maximum superheater tube wall temperature 
compared to the cross-counter-current heat exchanger, 
but its thermal efficiency is slightly lower than that of 
the cross-counter-current heat exchanger. 

3.1 Two-pass cross-co-current superheater 

To evaluate the accuracy of the proposed method, the 
steam and flue gas temperature distributions were also 
determined using an exact analytical method [9].  
The steam and flue gas inlet temperatures to the 
superheater were ,1 501.61sT C   and 977gT C   . The 
number of heat transfer units on the steam side was 

0.1831gN   and on the flue gas was 0.1577sN  . 

Table 1. Water steam temperature in the first pass of the co-
current superheater in C  

a) 
n=5 

i i xx x L   Analytical 
exact 

method 

Present 
method  

0.0 501.61 501.61 
0.2 515.117 515.118 
0.4 528.240 528.242 
0.6 540.990 540.993 
0.8 553.378 553.382 
1.0 565.414 565.418 

b) 
n=7 

i i xx x L   Analytical 
exact 

method 

Present 
method 

0.0 501.61 501.61 
1/7 511.297 511.298 
2/7 520.787 520.778 
3/7 530.084 530.085 
4/7 539.191 539.193 
5/7 548.113 548.115 
6/7 556.853 556.855 
1.0 565.414 565.417 

Table 2. Water steam temperature in the second pass of 
the co-current superheater in C  

a) 
n=5 

i i xx x L   Analytical 
exact 

method 

Present 
method 

0.0 610.697 610.704 
0.2 602.278 602.284 
0.4 593.547 593.553 
0.6 584.498 584.504 
0.8 575.123 575.128 
1.0 565.414 565.418 

 
b) 

n=7 

i i xx x L   Analytical 
exact 

method 

Present 
method 

0.0 610.697 610.701 
1/7 604.715 604.718 
2/7 598.575 598.578 
3/7 592.274 592.278 

4/7 585.811 585.814 
5/7 579.182 579.184 
6/7 572.384 572.386 
1.0 565.414 565.417 

 
The comparison of the water steam temperature 

determined by the proposed method and the exact 
method [9] are presented in Tables 1a and 2a when the 
tube is divided into 5 finite volumes and in Tables 1b 
and 2b when it is divided into 7 finite volumes. From the 
analysis of the results presented in Tables 1 and 2, it can 
be seen that the presented method has excellent 
accuracy. Despite the division of the superheater tubes 
into a small number of finite volumes, the differences 
between the steam temperatures obtained by the 
proposed method and the exact method are negligible. 

3.2 Two-pass cross-counter-current 
superheater 

The input data for the counter-current superheater 
calculations were the same as for the co-current 
superheater. An analytical model of a two-pass cross-
flow counter-current superheater was developed, but 
due to lack of space, the derived formulae are not 
presented here. The results of comparing the steam 
temperatures obtained by the developed method and the 
exact method are presented in Table 3 for the first pass 
and Table 4 for the second pass. 

Table 3. Water steam temperature in the first pass of the 
counter-current superheater in C  

a) 
n=5 

i i xx x L   Analytical 
exact 

method 

Present 
method 

0.0 501.61 501.61 
0.2 513.3628 513.3629 
0.4 524.7303 524.7305 
0.6 535.722 535.7223 
0.8 546.3469 546.3474 
1.0 556.614 556.6145 

 
b) 

n=7 

i i xx x L   Analytical 
exact 

method 

Present 
method 

0.0 501.61 501.6101 
1/7 510.0446 510.0447 
2/7 518.2812 518.2814 
3/7 526.3234 526.3235 
4/7 534.1744 534.1746 
5/7 541.8377 541.838 
6/7 549.3165 549.3168 
1.0 556.614 556.6143 
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Table 4. Water steam temperature in the second pass of 
the counter-current superheater in C  

a) 
n=5 

i i xx x L   Analytical 
exact 

method 

Present 
method 

0.0 556.814 556.6145 
0.2 568.5593 568.5598 
0.4 580.1652 580.1657 
0.6 591.4413 591.4418 
0.8 602.3971 602.3975 
1.0 613.0415 613.0419 

 
b) 

n=7 

i i xx x L   Analytical 
exact 

method 

Present 
method 

0.0 556.614 556.6143 
1/7 565.1814 565.1817 
2/7 573.5743 573.5745 
3/7 581.7961 581.7963 
4/7 589.8503 589.8506 
5/7 597.7404 597.7407 
6/7 605.4697 605.47 
1.0 613.0415 613.0417 

 
From the analysis of the results presented in Tables 

3 and 4, it can be seen that the steam temperatures 
calculated using the presented method and the exact 
analytical method are very close to each other, as in the 
case of the co-current superheater. The co-current 
superheater is less efficient compared to the counter-
current superheater. The outlet steam temperature from 
the counter-current superheater is 613.04 C  and the 
outlet steam temperature from the co-current 
superheater is lower at 610.70 C . It can be seen, 
however, that the differences between the outlet steam 
temperatures of the two superheaters are not large. 

4 Conclusions  
The developed method for non-iterative modelling of 
tube cross-flow heat exchangers is characterised by 
excellent accuracy and very short computer calculation 
times. Already when dividing the tube in the heat 
exchanger into 5-7 finite volumes, results with high 
accuracy are obtained. A mesh independent study 
should be carried out in the calculation of each heat 
exchanger, from which the necessary number of finite 
volumes along the length of the tube could be 
determined. The high accuracy of the method is 
confirmed by comparisons of the calculated steam and 
flue gas temperatures in the cross-co-current superheater 
by the proposed method with the results of calculations 
using the exact analytical solutions.  
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