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Abstract. This work studies the potentials of Digital Twin solutions for the design of competitive and reliable 

green hydrogen facilities. A digital twin based on stochastic simulations is proposed to address the 

uncertainties associated with investment and operating costs, to increase confidence and stimulate 

investments. Several input assumptions are involved (i.e., capital and operational costs, energy consumption, 

available energy, among others) to analyse their influence on financial indicators. A set of facility designs 

with equipment redundancy, and thus different system availabilities, was proposed. Monte Carlo simulation 

method is chosen to propagate uncertainties onto the project bankability assessment. By applying the proposed 

methodology, the opportunity index and internal rate of return (IRR) are calculated. A sensibility analysis is 

also carried out. The simulations illustrate that the design of a facility can be optimized to achieve higher 

profits, based on a trade-off between investment and availability. This study concludes that digital twin 

solutions are an opportunity for reducing the uncertainties associated with green hydrogen facility design. 

Improvements to the proposed model can be achieved by performing a refined simulation, in relation to the 

calculation of system availability and maintenance costs. 

 

1 Introduction  
By 2050, global final energy consumption is expected to 

increase by about 30% and the production of electricity is 

projected to double [1]. However, currently, it is based on 

intensive exploitation of fossil energy sources. 

Approximately 81% of the world's energy consumption 

stem from coal, crude oil, and natural gas, which are at the 

origin of most of the greenhouse gas emissions that cause 

climate change [2]. Within the framework of the Paris 

Agreement aimed at a temperature increase of less than 

2°C [3], numerous actions have been taken to achieve a 

decarbonized economy, mainly proposing an increase in 

the use of renewable energy sources [4]. However, this 

drastic change implies significant challenges to meet the 

growing demand for energy, from the point of view of 

security of supply, availability of resources and robustness 

of the power network.   

 

Hydrogen has been identified as a key energy carrier to 

drive the energy transition and achieve the sustainable 

development goals [5,6], being a long-term opportunity to 

move to cleaner energy and transport systems [7]. Through 

water electrolysis, green hydrogen is produced from 

renewable electricity. Among the main benefits are: 

 

- Provision of long-term energy storage solutions for 

renewable energy sources [6]. 

- Diverse roles in different energy systems and industries 

(e.g., heat generation, low-carbon fuel supply, electricity 

generation, feedstock in chemical industry, etc.) [6]. 

- Hydrogen only emits water as a byproduct without any 

greenhouse gas emissions when it is used in a fuel cell 

[8]. 

- It possesses a high energy density (140 MJ/kg), being 

more than twice the energy density of typical energy 

carriers (e.g., 50 MJ/kg for methane) [8].  

 

Nonetheless, green hydrogen technologies face multiple 

challenges. A major issue is the economic viability of 

water electrolysis using renewable electricity compared to 

other hydrogen production technologies (e.g., steam 

methane reforming) [9]. In this regard, significant cost 

reductions and efficiency improvements will be necessary 

before green hydrogen facilities can be economically 

competitive [10,11]. Furthermore, the Technology 

Readiness Level (TRL) of these technologies are at Level 

3 to 7 [12], implying that a limited amount of historical 

data is available. This fact leads to poor estimates of 

system performance and thus represents investment risks. 

It is then crucial to evaluate the impact of input uncertainty 

on performance indicators related to decision-making. 
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Digital Twin (DT) technologies have been successfully 

implemented for the intelligent use of available data. By 

using the internet of things (IoT), software simulation, and 

data analytics, DT technologies create a digital replica of 

a physical object or system [13]. Its use is gaining 

momentum due to rapidly evolving simulation and 

modelling capabilities, better coupling between 

interoperability and IoT sensors, and increased availability 

of infrastructure for the use of digital devices [14]. 

Furthermore, DT technologies have proven to offer 

advantages in accelerating technology growth, optimizing 

design, and improving return on capital [15–18]. Despite 

the potential offered by DT technologies, few attentions 

have been given to their application in green hydrogen 

facility design. To address these gaps, this works proposes 

a DT-driven approach based on stochastic simulations for 

the smart design of green hydrogen facilities.  

 

This paper is divided into six sections. Following this 

introduction, a literature review is presented in Section 2. 

The main five steps of the methodology are described in 

Section 3. The case study chosen to illustrate the 

methodological framework is shown in Section 4. In 

Section 5, the main results and a sensibility assessment are 

analyzed. Finally, conclusions and perspectives are drawn 

in Section 6.  

2 Literature review  
Since its concept was introduced by Michael Grieves in 

2002 [19], the Digital Twin technology has been applied 

to different fields of engineering [13–18]. They are the 

result of a continuous improvement of design, 

optimization and simulation methods used in industry, 

being part of what today is called Industry 4.0 paradigms 

[20]. DT concepts have been involved in energy systems 

and chemical industry mainly for the development of 

optimal management strategies [18,21,22], which is also 

the case for green hydrogen technologies: 

 

- Ogumerem et al. propose an optimal thermal 

management for Proton Exchange Membrane Water 

Electrolysis (PEMWE) systems driven by DT 

technologies [23]. Their study shows that it can attenuate 

the long-term effects of high operating temperatures or 

rapid temperature changes on the polymer membranes. 

- DT concepts for the optimal operation of hydrogen 

storage systems have been successfully developed [13]. 

The DT real-time connection to hydrogen vessels 

provides condition monitoring, allowing the operator to 

receive intelligent insights to reduce risk.  

- Kang et al. presented a dynamic DT of a 25 kW Solid 

oxide fuel cells (SOFC) plant as a simulator to help 

operators safely and stably determine the operating 

conditions for a real commercial SOFC plant [24]. The 

results show that the on-site operation prediction is 

highly accurate, helping operators to determine 

operation strategies. 

- Meraghni et al. propose a data-driven DT prognostics 

method for proton-exchange membrane fuel cells 

(PEMFCs). A DT is applied to establish an ensemble 

remaining useful life prediction system [25]. Its 

implementation achieves a high prediction accuracy. 

Furthermore, the predicted results are proved to be less 

affected even with limited measurement data. 

 

Some studies focus on the design and simulation of 

hydrogen production plant components. For example, 

Wang et al. develops a high-accuracy data-driven 

surrogate model of proton exchange membrane fuel cells 

(PEMFCs) [26]. Their model has a comparable accuracyto 

a comprehensive 3D physical model. However, it 

considerably reduces the cost of computation and time. 

 

As seen, methodologies based on data-driven DT 

approaches have been applied for the optimal management 

and simulation of green hydrogen technologies. However, 

this approach has not necessarily been applied to the 

design and evaluation of entire facilities. In the next 

section, a methodology to address some of these aspects is 

presented. 

3 Methodological framework  
A methodological framework for the smart design of green 

hydrogen facilities based on stochastic simulations and 

data-driven DT approach is presented. The methodology 

consists of five steps as described in Fig. 1. 

Fig. 1. Methodological framework 
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3.1. Facility design proposals  
A green hydrogen production system typically consists of 

five main echelon [27], which are illustrated in Fig. 2. 

Renewable electricity and water are used to produce 

hydrogen through electrolysis. Hydrogen is then 

conditioned to obtain the desired physical form at specific 

conditions (i.e., pressure, temperature, residue gas 

composition, among others), which will determine the 

subsequent stages of the process chain. Hence, hydrogen 

could be compressed or liquefied, and stored.  

 

Given the set of equipment that composes each of the 

echelons (e.g., compressors, pumps, heat exchangers, 

electrolyzers, etc.), several configurations are possible. 

Thus, different plant designs can be proposed with various 

level of redundancy of the equipment, which can be in 

series or in parallel. This leads to a trade-off between 

system availability and invested capital, being a key aspect 

to be addressed in order to increase the financial 

performance of the project. The following sections will 

address these issues. 

3.2 Data collection and probability distribution 
definition  

A set of techno-economic data is necessary to carry out the 

bankability analysis. It corresponds to the acquisition costs 

of each equipment, operating costs, main time to failure, 

main time to repair, process efficiencies, production rates, 

among others. It comes from direct monitoring of 

industrial systems. However, in case of insufficient 

information coming directly from operating facilities, data 

from manufacturers and expert consultation can be 

included. In this sense, some assumptions are made about 

the probabilistic distribution function (PDF) of the data 

involved (i.e., triangular, Gaussian, constant, among 

others) [28].  

 

The subsequent incorporation of data from industrial 

projects operating under real conditions allows to refine 

previous assumptions, which leads to updating the PDF of 

inputs. For this purpose, there is a set of strategies such as 

Bayesian network modelling, which have demonstrated 

their applicability to this type of self-learning process 

[29,30]. 

3.3 Calculation of system availability  

The calculation of the system availability of the design 

facilities is the next step in the proposed methodology. The 

availability of a repairable system can be defined as the 

probability that the system will be operational at a given 

time "t" [31]. An analytical approach to calculating 

availability is presented in Eq. (1) to (5). The Main Time 

to Failure (MTTFi) and Main Time to Repair (MTTRi) for 

each equipment “i” are used in Eq. (1) and (2) to calculate 

their failure (λi) and repair rate (μi), respectively. In this 

case, they are assumed to be constant. These parameters 

are used to determine the availability of each equipment 

through Eq. (3). Finally, the system availability is 

calculated considering series (As) or parallel (Ap) 

configurations by using Eq. (4) and (5), respectively.  
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Fig. 2. Generic green hydrogen process chain 

E3S Web of Conferences 334, 02001 (2022) 
EFC21

https://doi.org/10.1051/e3sconf/202233402001

3



��(
) = � 	�(
)   
�

���
 (4) 

��(
) = 1 − ��1 − 	�(
)� 
�

���
 (5) 

3.4 Stochastic simulation 

Stochastic simulations are used to consider uncertainty on 

several input parameters. Thus, the simulation output will 

have an inherent variability due to the stochastic nature of 

the system under study, which is referred to as stochastic 

uncertainty [32]. Renewable energy systems exhibit these 

characteristics due to the intermittency of the renewable 

energy sources (e.g., solar and wind sources). The 

algorithms used to deal with this type of problem are well 

known and are generally based on statistical approaches 

[32]. 

 

This study proposes the use of Monte Carlo simulations as 

stochastic method [33], which is well-known and 

successfully applied to similar energy systems [34,35].   It 

can be summarized as follow:  

 

- Define input parameters and probability distribution 

functions (as described in Section 3.2. and 3.3.). 

- Find the cumulative distribution function (CDF) for 

each parameter. 

- Sample from the CDF using a random number 

generator (between 0 and 1).  

- Perform simulations with the generated samples to 

obtain the CDF of the outputs. The number of 

simulations will depend on the level of precision 

required. 

3.5 Results analysis and post-processing  

The application of a stochastic simulation, in this case, the 

Monte Carlo method, allows to obtain the CDF of the 

outputs. Several outputs can be evaluated for further 

analysis. In this case, the internal rate of return (IRR) and 

the “opportunity index” are proposed as the main 

performance indicators. 

3.5.1 Internal rate of return 

The internal rate of return (IRR) is the discount rate that 

would yield a net present value (NPV) of zero over the 

planning period. A zero NPV value means that the 

discounted cashflows generated by the project are 

equivalent to the cashflows obtained with an investment 

on a bank account serving an interest rate equivalent to 

IRR [36]. 

3.5.2 Opportunity index 

The opportunity index corresponds to the probability of 

achieving a value equal to or lower than the desired output 

value. 

 

4 Case study 
In order to demonstrate the usefulness of the proposed 

methodology, an analysis was carried on a project located 

in the south of Spain. This region is one of the most 

suitable for the deployment of photovoltaic systems in 

Europe, thanks to its highest levels of solar radiation. As 

results, it is one of the regions that have been allocated the 

highest volumes of the EU funds to promote solar energy 

projects [37]. 

 

The project to be evaluated consists of the production of 

green hydrogen from solar electricity (i.e., photovoltaic). 

The data considered involve each of the echelon in the 

green hydrogen production chain: energy production, 

water supply, water electrolysis, hydrogen conditioning 

and buffer storage. The data comes from consultation with 

manufacturers, experts and industrial data. The main 

parameter inputs are given below: 

 

- The technology used for the electrolysis of water 

corresponds to pressurized alkaline electrolysis. 

- The facility's capacity is 100 MWh, which corresponds 

to 20 electrolyzers of 5 MW each. 

- 100% of the electricity used comes from solar energy 

source. 

- The final physical form of hydrogen is gaseous. 

- Hydrogen is compressed from 30 to 70 bar. 

- The target IRR is 5%. 

- The lifespan of the project is 35 years. 

 

Three green hydrogen facility design configurations are 

tested, considering redundancy in key equipment (i.e., 

electrolyzers and compressors), which implies a trade-off 

between CAPEX and system availability. They are shown 

in Table 1.  

 
Table 1. Green hydrogen facility design configurations 

Design Description 

--- 1 (Base case) Project in the south of Spain 

--- 2 (Hypothetical A) 
Design 1 with 20% increase in 
hydrogen production capacity. 

--- 3 (Hypothetical B) 
Design 2 with doubled 
compression capacity 

5 Results 
The results obtained by applying the proposed 

methodology are shown in this section. Table 2 presents 

the CAPEX and system availability of each design. System 

availability in Design 2 and 3 increases by 2.5 and 3.5% 

compared to the baseline design, respectively. 

Nevertheless, an increase in availability implies a higher 

investment. CAPEX in Design 2 and 3 rises by 20 €/kW 

(5.4%) and 70 €/kW (19%) compared to Design 1, 

respectively. 
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Table 2. Availability and CAPEX for each design (hydrogen 
production) 

Design scenario System availability 
(%) 

CAPEX 
(€/kW) 

--- 1 (Base case) 96.0 370 
--- 2 (Hypothetical A) 98.5 390 
--- 3 (Hypothetical B) 99.5 440 

 
As indicated in Section 3.5, the IRR and the opportunity 
index were defined as the main performance indicators. 
Fig. 2 (a) then shows the opportunity index vs IRR for the 
base design. It reflects a potential business for the project 
under study. It is observed that An IRR of 5% leads to an 
opportunity rate of 70%, thus showing the robustness of 
the basic design. To study the most critical drivers to 
achieve the targeted IRR, a sensitivity analysis was carried 
out, which is presented in Fig. 3 (b). It shows that the 
investment costs of electrolyzers, their power 
consumption, and the annual solar energy available 
represent the three critical parameters affecting the IRR, 
which can have an impact of up to +/- 0.23%. This implies 
that in order to obtain competitive green hydrogen plants, 

it is necessary to prioritize the reduction of the investment 
costs of the electrolyzers, which has also been indicated by 
other studies [38]. The energy consumed in the electrolysis 
process has also been identified in the literature as a key 
factor in increasing the profitability of green hydrogen 
production systems [11,38,39]. This should be a core 
aspect in the technological development of the future 
generation of electrolyzers. In addition, this parameter, as 
well as the annual solar energy available, also implies an 
operational optimization of the system. The development 
of technologies such as DT can be useful for such 
purposes, which has already been highlighted in other 
studies [23–25]. 
 
A comparison between the three proposed designs is 
carried out in Fig. 4. Their IRR and opportunity index are 
shown in Fig. 4 (a). “Design 2” allows to obtain a higher 
opportunity rate despite having a higher CAPEX (see 
Table 2), thanks to an increase in the system availability 
compared to the “Design 1”. “Design 3” decreases the 
opportunity index and therefore the probability of 
achieving higher IRR values. A comparison of the three 
configurations was made at P90 (chance ratio equal to 
90%). The IRR as a function of CAPEX is shown in Fig. 4 
(b). The IRR in “Design 2” increases by 0.24%, while it 
decreases by 0.43% in “Design 3”.  

Fig. 3. (a) Opportunity index as a function of IRR for 
the base case (Design 1); (b) Sensitivity analysis 

Fig. 4. (a) Opportunity index as a function of IRR for the 
three designs proposed; (b) IRR as a function of CAPEX. 
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According to this analysis, “Design 2” would be the green 
hydrogen facility design to be considered. This illustrates 
that an increase in the availability of the electrolyzers is 
enough to improve the financial performance of the 
hydrogen facility. In this sense, one aspect to consider 
would be the possibility of evaluating different hydrogen 
production technologies (i.e., PEMWE and solid oxide 
electrolysis cells), in order to compare the results with the 
precedent designs. 

6 Conclusions 
With the outputs of the proposed methodological 
framework applied to the green hydrogen facility design, 
we were able to demonstrate that an approach driven by 
DT technologies and stochastic analysis generates 
substantial value-added insights to decision-makers. 
Firstly, the approach developed allows addressing the 
uncertainty inherent in the input parameters and its 
consequences on key financial performance indicators. 
Secondly, the probability of reaching a given value using 
an indicator such as the opportunity index provides 
confidence intervals. Thus, the risk associated with the 
project can be mitigated. Finally, different designs can be 
proposed and evaluated, which allows to find trade-offs 
between the capital invested and the system availability. 
Consequently, the proposed approach contributes to 
optimal, coherent, and robust decision making. 

 
The usefulness of the methodology was shown in a case 
study. Three green hydrogen facility design were tested. 
When comparing the designs, it was determined that 
"Design 2" presented the best business opportunity, thanks 
to an improved trade-off between capital investment and 
system availability compared to the base case. The 
calculation of its opportunity index shows that higher IRR 
can be attained with lower risk. Besides, a sensitivity 
analysis was performed to identify the parameters that 
have the major impact on the IRR. The capital cost of 
electrolyzers is the main parameter that needs to be 
improved to increase business opportunities and is a key 
issue for the development of the next generations of 
electrolyzers. 
 
Future research will be conducted on the treatment of the 
input data when it will come from direct monitoring of 
different hydrogen production systems, since the 
simulation output data, and hence the performance 
measures, are directly affected by the probability 
distributions (i.e., input models) from which the sample 
paths are generated in simulation [32]. In this sense, a key 
aspect to be addressed will be the appropriate selection of 
probability models that will adequately characterize the 
stochastic behavior of the system, in order to reduce 
uncertainty. Among the major issues to be considered are 
the calculation of system availability and operating costs. 
 
 

The authors would like to thank the team of experts from 

Corporate Value Associates (CVA), Capgemini Engineering and 

Envision Digital, whose comments contributed to enrich the 

work carried out. 

References 
1.  IAEA, Energy, Electricity and Nuclear Power 

Estimates for the Period up to 2050 (Vienna, 
2020) 

2.  IEA, Key World Energy Statistics 2020 (Paris, 
2020) 

3.  United Nations, Paris Agreement (Paris, 2015) 
4.  IRENA, (2020) 
5.  European Commission, (2020) 
6.  A. Lewandowska-Bernat and U. Desideri, Appl. 

Energy 228, 57 (2018) 
7.  T. da Silva Veras, T. S. Mozer, D. da Costa Rubim 

Messeder dos Santos, and A. da Silva César, Int. J. 
Hydrogen Energy 42, 2018 (2017) 

8.  S. Shiva Kumar and V. Himabindu, Mater. Sci. 
Energy Technol. 2, 442 (2019) 

9.  E. Carrera and C. Azzaro-Pantel, Comput. Chem. 
Eng. 153, 107386 (2021) 

10.  T. Egeland-Eriksen, A. Hajizadeh, and S. Sartori, 
Int. J. Hydrogen Energy 46, 31963 (2021) 

11.  E. Carrera and C. Azzaro-Pantel, Comput. Aided 
Chem. Eng. 50, 1859 (2021) 

12.  R. Pinsky, P. Sabharwall, J. Hartvigsen, and J. 
O’Brien, Prog. Nucl. Energy 123, 103317 (2020) 

13.  A. Jaribion, S. H. Khajavi, M. Öhman, A. Knapen, 
and J. Holmström, in (2020), pp. 369–375 

14.  J. Leng, D. Wang, W. Shen, X. Li, Q. Liu, and X. 
Chen, J. Manuf. Syst. 60, 119 (2021) 

15.  C. K. Lo, C. H. Chen, and R. Y. Zhong, Adv. Eng. 
Informatics 48, 101297 (2021) 

16.  Y. Wang, X. Wang, and A. Liu, Procedia CIRP 93, 
198 (2020) 

17.  M. Liu, S. Fang, H. Dong, and C. Xu, J. Manuf. 
Syst. 58, 346 (2021) 

18.  E. Örs, R. Schmidt, M. Mighani, and M. Shalaby, 
in 2020 IEEE Int. Conf. Eng. Technol. Innov. 
(2020), pp. 1–8 

19.  M. Grieves, White Pap. 1, 1 (2014) 
20.  H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. 

Hoffmann, Bus. Inf. Syst. Eng. 6, 239 (2014) 
21.  A. Ebrahimi, in 2019 IEEE 28th Int. Symp. Ind. 

Electron. (2019), pp. 1059–1066 
22.  E. O’Dwyer, I. Pan, R. Charlesworth, S. Butler, 

and N. Shah, Sustain. Cities Soc. 62, 102412 
(2020) 

23.  G. S. Ogumerem and E. N. Pistikopoulos, J. 
Process Control 91, 37 (2020) 

24.  J.-L. Kang, C.-C. Wang, D. S.-H. Wong, S.-S. 
Jang, and C.-H. Wang, J. Taiwan Inst. Chem. Eng. 
118, 60 (2021) 

E3S Web of Conferences 334, 02001 (2022) 
EFC21

https://doi.org/10.1051/e3sconf/202233402001

6



25.  S. Meraghni, L. S. Terrissa, M. Yue, J. Ma, S. 
Jemei, and N. Zerhouni, Int. J. Hydrogen Energy 
46, 2555 (2021) 

26.  B. Wang, G. Zhang, H. Wang, J. Xuan, and K. 
Jiao, Energy AI 1, 100004 (2020) 

27.  E. Carrera and C. Azzaro-Pantel, Chem. Eng. Sci. 
246, 116861 (2021) 

28.  J. S. Arora, Introduction to Optimum Design, 
Fourth edi (Elsevier, Iowa, 2017) 

29.  M. Borunda, O. A. Jaramillo, A. Reyes, and P. H. 
Ibargüengoytia, Renew. Sustain. Energy Rev. 62, 
32 (2016) 

30.  T. Adedipe, M. Shafiee, and E. Zio, Reliab. Eng. 
Syst. Saf. 202, 107053 (2020) 

31.  Y. Hou, M. Sallak, and W. Schön, IFAC-
PapersOnLine 28, 1315 (2015) 

32.  C. G. Corlu, A. Akcay, and W. Xie, Oper. Res. 
Perspect. 7, 100162 (2020) 

33.  A. F. Magnússon, R. Al, and G. Sin, Comput. 

Aided Chem. Eng. 48, 451 (2020) 
34.  E. J. da S. Pereira, J. T. Pinho, M. A. B. Galhardo, 

and W. N. Macêdo, Renew. Energy 69, 347 (2014) 
35.  Y. Gu, X. Zhang, J. Are Myhren, M. Han, X. Chen, 

and Y. Yuan, Energy Convers. Manag. 165, 8 
(2018) 

36.  E. H. Macdonald, Handb. Gold Explor. Eval. 553 
(2007) 

37.  C. Perpiña Castillo, F. Batista e Silva, and C. 
Lavalle, Energy Policy 88, 86 (2016) 

38.  H. Böhm, A. Zauner, D. C. Rosenfeld, and R. 
Tichler, Appl. Energy 264, 114780 (2020) 

39.  A. Buttler and H. Spliethoff, Renew. Sustain. 
Energy Rev. 82, 2440 (2018) 

 
 
 
 
 

E3S Web of Conferences 334, 02001 (2022) 
EFC21

https://doi.org/10.1051/e3sconf/202233402001

7


