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Abstract. The integration of photovoltaic power brings the key to clean energy. However, the increasing
proportion of photovoltaic (PV) energy in power systems due to the random and intermittent nature of solar
energy resources is causing difficulties for system operators to dispatch PV power stations. To reduce the
negative influence of the use of PV power, it is great significant to predict PV power accurately. In this paper,
we propose a high-precision hybrid neural network model that employs Gated Recurrent Units (GRU) and
Convolution Neural Network (CNN) to build a GRU-CNN model to forecast PV system output power. The
proposed framework has two major phases. Firstly, the sample data is divided into training set and test set. For
this, the temporal characteristics of the data set are extracted using a GRU model and the spatial characteristics
are obtained using the CNN model. Secondly, the final predicted PV power is obtained through the output
layer. The forecasting accuracy of GRU-CNN is determined by the mean absolute error (MAE), mean square
error (MSE), determination coefficient (R2) and root mean square error (RMSE) values. The findings of the
comparison experiments show that the GRU-CNN model has better accuracy than some deep learning methods,
including, GRU, CNN and long-short term memory model (LSTM).

1 Introduction

Recently, it is evident that the utilization of renewable en-
ergy sources has increased worldwide. This increase is
due to the advantages of renewable energy sources and
their impact on the environment, in addition to the huge
increase in demand for load [1, 2]. In particular, solar en-
ergy, as a source of renewable energy, is complete accessi-
ble, scalable and free [3]. Photovoltaic (PV) power gener-
ation can convert solar power into electric energy through
the photovoltaic effect, which is one among the fore-
most promising renewable power generation techniques
[4]. The photovoltaic energy plants have the major influ-
ence on the power increase in the world energy system.
However, the random and intermittent nature of solar en-
ergy leads to difficulties in the stable operation and man-
agement of the power grid [5]. PV power forecasting is
an important technology to consider in this instance, as it
is able to minimize the gap between electricity supply and
demand. At present, PV power prediction is one of the
most economical and feasible solutions. Meanwhile, the
accurate forecasting of PV power generation has positive
effects on the control strategies of PV-battery energy stor-
age systems, such as improving the self-consumption of
PV systems and reducing power flows[6]. Many load fore-
casting approaches based on massive data have arisen as a
result of this background, and these methods are primarily
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grouped into three categories: 1) approaches of statistics;
2) physical methods; 3) artificial intelligence based meth-
ods [7]. Statistical methods use only historical PV power
data as inputs, which are suitable for forecasting in the
short and ultra-short term. forecasting, such instance time
series method [8],autoregressive moving average (ARMA)
and linear regression (LR) [9]. The physical method is a
mathematical model based on the principle of photovoltaic
power generation, [10]. The numerical weather predic-
tion (NWP) information as inputs [11] or soft-computing
models [12]. Analytical equations are usually compli-
cated with high-computational cost [13]. Artificial intel-
ligent learning methods, has the ability to benefit from the
rapid growth of computing power and exploit artificial in-
telligence algorithm to map directly from input to output
[14]. The primary methods for solar forecasting are per-
sistence model, artificial neural network (ANN), support
vector machine (SVM), and hybrid model [15].To estimate
the power generation of PV generators almonacid et al.
[16] proposed an ANN model (the multi-layer perceptron
(MLP) network developed by the Hahn University Solar
and Automated Energy team) and compared with classical
methods. Cervone et al. [17] proposed a hybrid method
based on neural network and analog ensemble for short-
term pv power forecasting for photovoltaic fields in three
regions of Italy. Abdel-Nasser and Mahmoud [18] used a
new deep long short term memory for forecasting the Pho-
tovoltaic power output. Takashi Kuremoto [19] used deep
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neural networks for time series forecasting. Gated recur-
rent unit (GRU) [20] is an advancement of the standard
RNN based on optimized LSTM, and the internal unit of
the GRU is identical to the LSTM[21]. In [22], a GRU
model is utilized to investigate the temporal sequence of
relationships in typhoon progression. Wang used novel ap-
proach based on Gated recurrent unit networks to forecast
short-term Photovoltaic power [23]. Kim et al. proposed
CNN-LSTM model to predict electricity and recorded the
lowest error rates as compared to other classical models,
because CNN-LSTM model learned from both spatial and
temporal features [24]. However, although deep learning
models are potential in the field of Photovoltaic power pre-
diction, they still require to be further researched as there
are limited existing studies currently concentrating on in-
put feature construction and model training.

In this paper, a hybrid deep learning forecasting model
is proposed for short term PV power forecasting with a
five-minute interval. The proposed model is based on
Gated Recurrent Units (GRU) and Convolution Neural
Network (CNN). In the GRU-CNN , the GRU module is
used to get the temporal features and CNN module is uti-
lized to extract spatial features corresponding to its out-
put GRU features. The main purpose of this work is to
achieve more accurate PV power forecasting through the
combination of GRU and CNN network. The validity of
the GRU-CNN model proposed in this paper is assessed
by comparison with GRU, LSTM, and CNN models. The
proposed GRU-CNN model and the other models is as-
sessed on mean absolute error (MAE), and mean square
error (MSE), determination coefficient (R2) and root mean
square error (RMSE) values were used as the evaluation
metrics.
This paper is organized as follows: in Section 2, briefly in-
troduces and analyses the proposed GRU-CNN prediction
model to analyse the temporal-spatial features. Section 3
shows the practical experimental results and comparisons
for the evaluation of the of the GRU-CNN model. Finally,
the conclusions and future work are summarized in Sec-
tion 4.

2 Method description

2.1 Gated Recurrent Unit

The GRU is a type of recurrent neural network that is a
newer generation and is a variant of LSTM. The GRU
structure, as shown in Figure 1, by combining the forget-
ting gate and the input gate into an update gate, the LSTM
three-gate design is improved, so there are one reset gate
and two gates update gate in GRU which is aiming to op-
timize the cellular structure.

The composition and structure of cell structure effec-
tively boosts the efficiency of the operation. So during
training the GRU neural network converges faster than
LSTM [25]. The calculation principle of each unit of GRU
is as follows [26].A reset gate rt and an update gate zt are
both included in the GRU, from the input of the current
neuron xt to the update gate zt , there is:

zt = σ(Wxt xt + Whzht−1 + bz) (1)

where bz is the bias of the update gate; Wxz is the weight
between the update gate and the input of the current neu-
ron; Whz is the weight between the update gate and the
hidden state ; ht−1 denotes the output of the previous neu-
ron; σ(.) is the sigmoid function which can be determined
as:

σ =
1

1 + e−x (2)

The reset gate rt is used to adjust the degree to which the
previous moments status information is ignored.

rt = σ(Wxr xt + Whrht−1 + br) (3)

where br is the bias of the reset gate; Wxr is the weight
between the input of the current neuron and the reset gate;
Whr is the weight between the hidden state and the reset
gate.

The following formula can be used to calculate the
candidate for the hidden state:

H̃t = tanh[Wxhxt + W(rt ∗ ht−1)] (4)

where tanh is the hyperbolic tangent function that repre-
sents the element-wise multiplication; Wxh is the weight
between the input of the current neuron and the hidden
state; W is the temporary weight after the element-wise
multiplication.

Furthermore,the hidden state of this neuron ht can be
determined as:

ht = ht−1 ∗ (1 − zt) + zt ∗ H̃t (5)

After that,the final output state yt is calculated as:

yt = σ(Whoht + bh) (6)

where bh is the bias of the hidden state; Who is the
weight between the final output state and the hidden state.

2.2 Convolutional Neural Network

Convolutional Neural Network (CNN) is a class of deep
neural networks that is mainly used such as video pre-
diction, visual imagery, and time series classification [27]
due to its excellent features extraction and reorganization.
As proven by [28], the CNN model is a powerful deep
learning technique which has the advantage to overcome
the complex problems. Figure 2 shows the structure of
CNN. The later usually consists of input layer, convolu-
tional layers, pooling layers, fully-connected layers and
output layer. The input layer feeds the data into the net-
work. The data needs to be processed before to be trans-
mitted to the input layer. The neurons of the input layer
are usually relative to the dimension of input data. The
convolutional layers apply a convolution operation to the
input. It performs several convolution kernels to generate
new feature maps, and also a bias is added. In most cases,
features with a large dimension are produced following the
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Figure 2: Convolutional Neural Networks (CNN) Architecture.

convolutional layer, which usually needs to reduce the in-
plane dimensionality of input maps. Thereby decreasing
the number of learnable parameters and helping to avoid
the overfitting issues. The pooling methods exist under
different types, such as max pooling, and average pooling.
Fully-connected layer is often used for high-level infer-
ence, which combines all local features into global fea-
tures, and it is used to calculate the final result according
to the following equation:

yi =

n∑
i=1

Wi, jxi + b1 (7)

where y j is the output of fully-connected layer in the jth

neuron, n is the length of input data (x), Wi, j stands for the
neuron weight between ith input value and jth neuron and
b1 is the bias.

In this paper, the activation function selects the ReLU
Rectified Linear Unit function which is defined as follows:

ki = g(yi) = max(0, yi) (8)

where ki is the output after activation function.

2.3 GRU-CNN Hybrid Neural Networks

In this paper, a hybrid model called GRU–CNN is pre-
sented to predict PV power generation, which comprises
of a serial connection of GRU and CNN, as shown in
Fig.3. The first half of model GRU network, which is re-
sponsible to extracting the temporal characteristics of PV
power, The second half is CNN network , which is respon-
sible for extracting the characteristics spatial. The pro-
posed model is highly capable of extracting complex fea-
tures and patterns variables collected for PV power pre-
diction. GRU processes the temporal feature in historical
PV power data. GRU network main idea is to use specific
neurons with a basic structure to store and transfer infor-
mation over a long period of time in order to develop last-
ing memories, reduce the rate of information degradation,
and detect long-term dependencies. The resulting tempo-
ral information collected by the GRU from the PV power
time-series is then transmitted to the input layer of CNN
model. The CNN convolutional layer performs a convolu-
tion operation on multivariate time-series data in order to
extract spatial characteristics from various meteorological
variables. A CNN often contains numerous levels of con-
volutional–pooling layers, with several convolution runs
performed at each level to capture meaningful informa-
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Figure 3: GRU-CNN hybrid neural networks.

tion. CNN applies weights to meteorological parameters
based on their impact on PV power in this procedure. Fi-
nally, a fully connected (i.e., dense) layer is utilized to ag-
gregate the data and forecast the PV power using extracted
characteristics, as shown in Fig. 3

2.4 Model Evaluation Indexes

To compare the performance of different predictive mod-
els, we use the mean absolute Error (MAE), mean square
error (MSE), and root mean square error (RMSE), and co-
efficient of determination (R2). These evaluation criteria
are defined as follows:

MAE =
1
N

N∑
i=1

|yi − ỹi| (9)

MS E =
1
N

N∑
i=1

(yi − ỹi)2 (10)

RMS E =

√√
1
N

n∑
i=1

(yi − ỹi)2 (11)

R2 = 1 −
∑N

i=1(yi − ỹi)2∑N
i=1(yi − ȳi)2

(12)

where N is the total number of test samples. yi and ỹi are
the measured and predicted output power, respectively. ȳi

is the average of the measured power in the test set. The
predictive model is more efficient when R2 is closer to 1.
The lower are the values of MAE, MSE and RMSE, the
greater is the prediction performance.

Table 1: Ranges of variables.

Variable Ranges
PV output power (kW) 0 - 19.35
Current Phase Average (A) 0 - 80.10
Global Horizontal Radiation (W/m2) 0 - 2015.18
Diffuse Horizontal Radiation(W/m2) 0 - 769.85
Weather Temperature Celsius (oC) -39.98 - 61.92
Wind Direction (Âo) -6.97 - 5140.88
Weather Relative Humidity (%) 0 - 131.15

3 Experiments and Results

3.1 The description of the experimental data

In the simulation, the historical PV output power data
are acquired from the Desert Knowledge Australia Solar
Centre (DKASC). whose data can be openly accessed at
[29]. The data used are from a manufacturer named 1B
DKASC, Alice Springs PV system. The dataset covers
the period from May 2017 to May 2021, with a resolu-
tion of 5 minutes. The data includes current phase aver-
age (A), active power (KW), weather temperature celsius
(oC),diffuse horizontal radiation(W/m2), weather relative
humidity (%), global horizontal radiation (W/m2), wind
direction (Âo) etc, the ranges of the variables are shown in
Table 1. The PV dataset contains a total of 414169 sam-
ples. In this study,the training set is made up of 331329
samples drawn from these databases. The test set also in-
cludes 82833 samples. The output PV power dataset is
shown in figure 4.
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Figure 4: The output PV power in train dataset.

Table 2: The parameters settings in this paper.

Test GRU CNN
Test-1 units = 60 filters = 50; kernel-size = 2; stride = 2
Test-2 units = 80 filters = 100; kernel-size = 2; stride = 2
Test-3 units = 80; Dropout = 0.2 filters = 100; kernel-size = 2; stride = 2; Dropout = 0.2
Test-4 units = 80,100 filters = 200; kernel-size = 2; stride = 2
Test-5 units = 100,150; Droupout=0.2 filters = 32,64; kernel-size = 2; stride = 2; Dropout = 0.2

LSTM GRU-CNN
Test-1 units = 60 units = 60; filters = 50; kernel-size = 2; stride = 2
Test-2 units = 80 units = 80; filters = 100; kernel-size = 2; stride = 2
Test-3 units = 80; Dropout = 0.2 units = 80; filters = 100; kernel-size = 2; stride = 2; Dropout = 0.2
Test-4 units = 80,100 units = 80,100; filters = 200; kernel-size = 2; stride = 2
Test-5 units = 100,150; Droupout=0.2 units = 100,150; filters = 32,64; kernel-size = 2; stride = 2; Dropout = 0.2

3.2 Simulation and results

In this simulation, the performance of GRU-CNN fore-
casting model is evaluated comparing with three standard
forecasting models : gated recurrent unit (GRU) model,
convolutional neural network (CNN) model, and long-
short term memory model (LSTM) model. The parameters
settings of the proposed network in this paper are shown
in Table 2. For this experiment the value of batch size is
80, number of iterations in each epoch is 100. As shown
in Tables 3-5, the CNN has the highest averaged MAE,
MSE, and RMSE among the four models. The GRU mod-
ule results are slightly better than the LSTM module, al-
though they are both higher than the CNN. In more detail,
CNN achieved values of 0.1486, 0.0987 and 0.2912 for the
averaged MAE, MSE and RMSE, respectively, and GRU
achieved values of 0.1116, 0.0319 and 0.1766 for the av-
eraged MAE, MSE and RMSE, while LSTM reduced its
error rate to 0.1039, 0.0358 and 0.1861 for the averaged
MAE, MSE and RMSE. The suggested GRU-CNN model,
which combines the GRU and CNN models, produces the
most accurate forecasts. The proposed GRU-CNN models
average indexes are the lowest among all models: 0.0813,
0.0194 and 0.1359. However, the obtained results verified
the practicality of the proposed model in the photovoltaic
system power forecasting.

In practice, accurate forecasting of photovoltaic power
helps to reduce the uncertainty and volatility in the estima-

Table 3: MAE of different models.

Test GRU LSTM CNN GRU-CNN
Test-1 0.1052 0.1033 0.1047 0.0878
Test-2 0.0886 0.1196 0.1967 0.0852
Test-3 0.1635 0.1050 0.1260 0.0709
Test-4 0.0829 0.0958 0.1193 0.0755
Test-5 0.1125 0.0959 0.1964 0.0872
Test-Avg 0.1116 0.1039 0.1486 0.0813

Table 4: MSE of different models.

Test GRU LSTM CNN GRU-CNN
Test-1 0.0366 0.0382 0.0487 0.0305
Test-2 0.0226 0.0536 0.0763 0.0236
Test-3 0.0492 0.0245 0.0459 0.0118
Test-4 0.0220 0.0446 0.0493 0.0194
Test-5 0.0291 0.0183 0.2735 0.0174
Test-Avg 0.0319 0.0358 0.0987 0.0194

tion of photovoltaic power. To verify the competitiveness
of the proposed model further, R2 is used to measure the
performance in the four models. Note that the predictive
model will be more effective when R2 closer to 1. Table
6 shows the R2 for the four model, The GRU-CNN model

ICEGC'2021
E3S Web of Conferences 336, 00064 (2022) https://doi.org/10.1051/e3sconf/202233600064

5



Figure 5: Performance evaluations of different models for each test

Table 5: RMSE of different models.

Test GRU LSTM CNN GRU-CNN
Test-1 0.1914 0.1954 0.2207 0.1748
Test-2 0.1505 0.2316 0.2763 0.1544
Test-3 0.2219 0.1567 0.2143 0.1088
Test-4 0.1484 0.2113 0.2222 0.1394
Test-5 0.1708 0.1355 0.5229 0.1322
Test-Avg 0.1766 0.1861 0.2912 0.1359

Table 6: R2 of different models.

Test GRU LSTM CNN GRU-CNN
Test-1 0.9981 0.9980 0.9975 0.9984
Test-2 0.9988 0.9973 0.9961 0.9988
Test-3 0.9975 0.9987 0.9976 0.9994
Test-4 0.9988 0.9977 0.9975 0.9990
Test-5 0.9985 0.9990 0.9862 0.9991
Test-Avg 0.9983 0.9981 0.9949 0.9989

average R2 value is 0.9989, which is higher than the GRU
model R2 is 0.9983, which is better than the LSTM model.
R2 is 0.9981, which is better than the CNN model R2 is
0.9983. According to the average indexes, as shown by
the average indexes, Our suggested GRU-CNN model can
reach the best performance in PV Forecasting. For a better
visualization, the results of the models are also illustrated
in Figure 5.

The proposed GRU-CNN model has the smallest bar
of all the models. In test 1, test 3, and test 5, the MAE,
MSE, and RMSE bar of LSTM outperform the GRU
model. Although the GRU and LSTM model performs
always better than the CNN model but is inferior to GRU-
CNN model.It is clear that the suggested model performs
well in all five partitions, demonstrating that the proposed
GRU-CNN model can increase PV power forecast stability
over the other models.

As can be seen from Tables 3-6, among all the models,
the input sequence of test 3 on the testing set shows the
best effect. In order to better show the predicting results
of the proposed model in this paper, Figure 6 reports the
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Figure 6: Forecasting the PV power using all the methods in the input sequence of test 3.

forecasting results of the four models and actual PV power
in the input sequence of test 3. The predicting results of
all of the models outputs follow the same pattern as the
real values. The proposed GRU-CNN model has a higher
similarity, forecasting results is the closest to the actual
value.

In this paper, we proposed a new hybrid deep neu-
ral network framework that combines the GRU and CNN
modules. In the experiments, GRU provide more accurate
results than LSTM and CNN but our proposed GRU-CNN
model achieves the smallest error rate when compared to
other baseline models. Furthermore, the dataset is sepa-
rated into train and test data with different input sequence
to express the performance of the proposed model more
intuitively. All of the tests show that the proposed model
performs well, it shows that combining the gated recurrent
unit (GRU) with convolutional neural networks (CNN) can
improve prediction stability and effectiveness in PV power
forecasting, this work proposes a new research approach
in time sequence forecasting. Future research could aim
to enhance the accuracy of short-term PV power forecasts
by incorporating the hidden features of GRU and CNN in
a more effective way.

4 Conclusion

This paper proposes a new short term prediction model
based on GRU and CNN, which mainly introduces the ap-
plication of GRU-CNN in short-photovoltaic power pre-
diction. The proposed model is tested on 1B DKASC, Al-
ice Springs PV system data which are publicly available.
Due to the non-linearity in the input data, we transform it
by applying a standard minmax scalar then fed the stan-
dardized data for further training processes. After, we de-
veloped a hybrid model by employing GRU for temporal
features representation and CNN for spatial features repre-
sentation to achieve the lowest error rates when compared
to the traditional methods. Different evaluation matrices
were used to validate the stability, accuracy, and perfor-
mance of the proposed GRU-CNN model. The experimen-
tal results show that the proposed GRU-CNN based pre-

diction model is superior to other baseline models such as
GRU, LSTM and CNN. It has higher prediction accuracy.
The future work of this study will includes further improv-
ing the accuracy and stability of our proposed method and
applying it on many datasets.
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