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Abstract. In this study, the application of a two-stage inexact 
programming with value-at-risk (TIPV) model in water resources system 
planning has been developed. The TIPV method is intended to tackle the 
inexact parameters and the risks of economic loss. The application of case 
study shows that more alternatives under multiple levels of risks could be 
generated. The amount of water shortages and the width of system benefit 
intervals would decrease as the risk increases. TIPV could provide more 
effective information for stakeholders to recognize social policies with 
maximized system benefits under various risk levels. 

1 Introduction 
In water-resources system, many components and parameters are influenced by 
uncertainties. For example, the economic parameters may be represented by fuzzy numbers 
or intervals. And the stream conditions may exhibit stochastic uncertainties. These 
uncertainties should be tackled by appropriate inexact optimization methods. Maqsood et 
al.[1] proposed a method for water resources system planning by combing interval and 
fuzzy uncertainties into a two-stage stochastic programming. A new multi-purpose method 
has been presented by Khatiri et al.[2] in order to reach a compromise among multiple 
decision makers through identifying hydro-environmental management and policies. In this 
study, a two-stage inexact programming with value-at-risk (TIPV) model would be 
proposed for revealing dual uncertainties and reflecting the risks of recourse. A case study 
of TIPV on water resources management would be an attempt to combine the value-at-risk 
(VaR), the fuzzy boundary intervals and the random variables into a general two-stage 
programming framework.  

2 Two-stage Inexact Programming with VaR 
A two-stage inexact programming with VaR (TIPV) model is developed by introducing 
VaR into a two-stage inexact programming. TIPV can reveal uncertainties expressed 
intervals and probabilities in objective function and constraints. Moreover, possible risk 
loss of net system benefit could be measured. 
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Where f �%  is system benefit represented by a fuzzy boundary interval; iB�%  and iC�%  are 

benefit and penalty, respectively; iT �  is water allocation in first-stage; ijS�  is water shortage 

in second-stage; jq�  is available water resources under probability jp ; �  is maximum 

acceptable loss under probability � ; maxiT �  is maximum allowable water allocation; 
1, 2,...,i m�  is index for water users; 1,2,...,j n�  is index for probabilities.  
For decision makers, water resources could be promised to multiple demanders based 

on the requirement and the expected amounts of water resources in the first-stage. However, 
the inexact amounts of steam flow may bring out the water shortage problems. Therefore, 
economic penalties usually happen in the second-stage. TIPV is an attempt to combine the 
value-at-risk, fuzzy boundary intervals and random variables into a general two-stage 
programming framework. Economic penalties in the second-stage could be qualified and 
controlled by the VaR constraint in TIPV. That is to say, the optimal water resources 
allocations could be generated through maximum system benefits under controllable 
economic penalties. 

The solution algorithm of TIPV could be developed based on two-step and VaR 
transformation methods.  The two-step method is a useful method for solving two-stage 
programming[3]. Therefore, the difficulty of solution algorithm is the transformation of 
VaR constraint. Let � �%  be intervals with bounds of trapezoidal fuzzy random variable. The 

inexact VaR function � 
,FVaR� � �� �%  are formulated as[3,4]: 
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3 Application in Water Resources Management 
A case study on water resources management has been illustrated for application of the 
proposed TIPV method. There is an unregulated reservoir in this study. It supplies water 
resources to three water users (i.e. a municipality, an agricultural sector and an industry 
concern). Table 1 gives the economic data, including benefit and penalty. Table 2 gives the 
stream flow data. The related data about water allocation targets is shown in Table 3. 
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Table 1. Economic data ($/m3). 

 Net benefit iB�%  Penalty iC �%  

Municipal � 
1i �  [(83, 86,89, 92), (101, 104, 107, 110)] [(211, 215, 219, 223), (270, 273, 276, 279)] 

Industrial � 
2i �  [(40, 45, 50, 55), (65, 70, 75, 80)] [(55, 58, 61, 64), (84, 87, 90, 93)]
 

Agricultural � 
3i �  [(21, 22, 23, 24), (28, 29, 30, 31)] 
 

[(43, 46, 49, 52), (65, 68, 71, 74)]
 

Table 2. Stream flows. 

Flow level Probability (%) Stream flow jq�  (in106 m3) 

Low (L) � 
1j �  0.3 [3.4, 4.2] 
Medium (M) � 
2j �  0.4 [7.7, 12.6] 
High (H) � 
3j �  0.3 [15.0, 18.6] 

Table 3. Water allocation targets (106 m3). 

 Municipal 
� 
1i �  

Industrial 
� 
2i �  

Agricultural 
� 
3i �  

Water allocation target iX �  [1.5, 2.3] [2.7, 3.6] [3.0, 5.2] 

Maximum allowable allocation maxiX � 8.0 8.0 8.0 

Table 4 gives the solutions obtained from TIPV. There exist water shortages for 
industrial and agricultural water users under low level of stream flow. Only agricultural 
water user’s water demand could not be satisfied under medium level of stream flow. And 
under high level of stream flow, all water demand from three water users could be satisfied. 
Moreover, the amount of water shortage decreases as the risk level increases. It means that 
the VaR constraint for penalty has an effective on risk management.  

Table 4. Solutions obtained from TIPV (106 m3). 

Risk level �
Shortage ijY �  

11Y �
21Y �  31Y �

12Y �
22Y �

32Y �  13Y �
23Y �  33Y �  

0.5 0 [1.70, 2.50] 5.11 0 0 [0,3.31] 0 0 0 
0.7 0 [1.70, 2.50] 4.54 0 0 [0,2.74] 0 0 0 
0.9 0 [1.70, 2.50] 4.39 0 0 [0,2.59] 0 0 0 
0.95 0 [1.70, 2.50] 4.35 0 0 [0,2.54] 0 0 0 

Table 5 gives the results of system benefits under various risk levels. It indicates that 
the lower bound of system benefit increases as the risk level increases, and the upper bound 
of system benefit decreases as the risk level increases. That is to say, the increasing risk 
level would lead to an decreasing of interval width. 

Table 5. Net system benefit  ($ 106). 
Risk level �  Distribution of net system benefit f �%  
0.5 [(193.46, 227.98, 231.83, 251.02), (515.30, 539.18, 563.06, 586.94)] 
0.7 [(207.47, 255.21, 260.26, 280.65), (506.71, 530.53, 554.36, 578.18)] 
0.9 [(211.24, 262.54, 267.91, 288.62), (504.51, 528.32, 552.13, 575.94)] 
0.95 [(212.32, 264.63, 270.10, 212.32), (503.98, 527.78, 551.59, 575.39)] 
 

Figure 1 shows the optimal water allocation targets under =� 0.5, 0.7, 0.9 and 0.95. 
There always exist water shortage for water user of agriculture section under different 
stream flow levels under each risk levels. That is because the net benefit from agriculture 
section is the lowest among three water users. Moreover, comparing with other water users, 
the penalty for agriculture section is the lowest. Figure 2 shows the lower bound of optimal 
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water allocation amounts. Figure 3 shows the corresponding upper bound. Results could 
supply multiple strategies for decision makers in water resources system planning.  

 
Fig. 1. Optimal water allocation targets. 

 
Fig. 2. Lower bound of the optimal water allocation amount. 

 
Fig. 3. Upper bound of the optimal water allocation amount. 
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4 Concluding Remarks 
A case study on water resources management has been illustrated for application of a two-
stage inexact programming with VaR (TIPV) method in this study. The advantages of TIPV 
are that (1) it could deal with inexact parameters presented as fuzzy boundary intervals and 
probability distributions; (2) it could reveal the potential risk of recourse at the second-stage. 
The results of case study show that more alternatives under various risk levels could be 
generated. The width of system benefit intervals would decrease as the risk level increases. 
Once it appears water shortage, the promised water allocation to agriculture section would 
be reduced because of the lowest net benefit and penalty of agriculture section among three 
water users. However, the amount of water shortage would decrease as the risk level 
increases. It means that the VaR constraint for penalty has an effective on risk management. 
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