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Abstract. The paper presents a probabilistic uncertainty evaluation method described in the Guide to the 

Expression of Uncertainty in Measurement (GUM) [1] and its application to the field of Turbomachinery 

probe measurement techniques. All sources of uncertainties contributing to a measurement result are 

expressed in terms of probability distributions. Consequently, the overall standard uncertainty of the result 

can be calculated using the Gaussian error propagation formula. The result of the uncertainty evaluation 

yields the most probable value of the measurand and describes its distribution in terms of standard or 

extended uncertainties. A pneumatic five-hole-probe measurement technique has been chosen to show the 

principle of the probabilistic uncertainty evaluation method. The complete signal chain including the probe 

calibration, the modeling and the application in the turbine has been included in the analysis. The overall 

uncertainties of the measured flow angles and flow total and static pressures are presented as a function of 

the flow Mach number. In addition, the contribution of the individual sources of uncertainty to the overall 

standard uncertainty is shown. Based on this break down of uncertainties optimization options of the 

measurement chain are suggested. 

1 Introduction 

A realistic determination of the uncertainties of a 

measurement is essential for the further usage of the 

results. In the field of Turbomachinery the validation of 

numerical tools or the performance evaluation of 

components based on experimental results needs 

knowledge about their uncertainty. 

The first and most important part on this way is the 

detection of all sources of uncertainty influencing the 

results. In most cases their related information appear in 

very different formats, i.e. data sheet information on 

accuracy of measurement systems, stochastic 

distributions, etc., which can not be directly combined. In 

some cases different sources of uncertainty correlate with 

each other and should not be added directly. Unlike 

previously used methods the Guide of Uncertainty in 

Measurements describes a standardized method, which 

first converts all uncertainty information in probability 

distributions. Based on this it is consistent to use only the 

Gaussian error propagation formula to derive the overall 

uncertainty. In case of correlated parameters, cross-

correlation coefficients are used to evaluate their 

combined uncertainty contribution. Consequently, the 

final statement of uncertainty of the measurement result 
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contains the limits and the distribution of the expected 

values. 

The systematic approach of this method gives as well 

an overview about the share of each source of uncertainty 

to the overall uncertainty. These information can be used 

in order to optimize measurement chains. 

This paper will introduce this probabilistic uncertainty 

evaluation method by applying it to the field of flow field 

measurements in turbomachines with a pneumatic five-

hole probe. The uncertainty analysis of the measurement 

chain is presented in a general way, such that it can be 

easily adapted to different types of probes or calibration 

coefficients. Different probe data evaluation algorithms 

will be analyzed and compared. 

Nomenclature 

Kφ Calibration coefficient of flow 

 yaw angle   [-] 

Κγ Calibration coefficient of flow 

 pitch angle   [-] 

Κs Calibration coefficient of static 

 pressure    [-] 

Kt Calibration coefficient of total 

 pressure    [-] 
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p Pressure    [Pa] 

u Standard uncertainty 

x Input parameter 

y Result parameter 

V Variance 

k Coverave factor 

Greek 

φ Flow yaw angle   [o] 

γ Flow pitch angle   [o] 

Abbreviations 

5HP 5-Hole-Probe 

GEP Gaussian error propagation 

GUM Guide to the expression of uncertainty in 

measurement [1] 

Subscripts 

c Calibration 

m Measurement 

s static 

t total 

M Model 

P Pressure DAQ 

R Reference Flow 

T Traversing system 

2 Uncertainty evaluation method 

Unlike the traditional approaches the GUM method does 

not assume that there is a ‘true’ value that has to be 

determined during a measurement. Rather the methods 

recognizes that in the measurement of a physical 

parameter its value is only determined at the time of the 

measurement. Since the knowledge about a measurement 

is always incomplete, this determined value is never 

unique. Out of this idea a definition of the 

measurement uncertainty arises: 

The measurement uncertainty is a value associated to 

the physical parameter, which characterizes the range of 

values that can be rationally assigned to the physical 

parameter from the knowledge about the measurement. 

Consequently, the goal of the uncertainty analysis has 

to be to make a statement about the physical parameters 

determined by a measurement process, which is not 

entirely known. On this path there are two main focus 

points to consider: 

• measurement chain (model, physical relation) 

• input values (probability distributions) 

 

Based on this strategy the evaluation procedure can be 

structured in four logical steps proposed by Weise and 

Wöger [2]: 

Step 1 - Development of a mathematical model based 

on the definition of the measurand that describes the 

measurement problem. 

Step 2 - Gathering of uncertainty information 

(observations, data sheets, etc.) and converting them to 

probability distributions 

Step 3 - Calculation of the result and the associated 

standard uncertainty by applying the model and 

propagating the uncertainties. 

Step 4 - Presentation of the result and its extended 

uncertainty. 

Within step 2 all information about the input data have 

to be expressed by probability distributions. Due to this it 

is correct to use the Gaussian uncertainty propagation 

method, which is appropriate to combine these kind of 

information. 

The GUM method differentiates between two types of 

knowledge about the input data: 

• Type A 

Statistical information gathered during the 

measurement (observed data) 

• Type B 

Non-statistical information, which are known 

prior to the measurement (data sheets, etc.) 

As an example of type B the uncertainty information 

of a measurement device can be considered, for which 

only the lower and upper limit are known. In this case a 

rectangular distribution can be used. 

 
Fig. 1. Rectangular distribution 

The variance will be calculated as 

                                         𝑉(𝑋) =
(2𝑎)2

12
                             (2) 

The standard uncertainty will be calculated as 

                                      𝑢(𝑥) = √𝑉(𝑋) =
𝑎

√3
                   (3) 

The uncertainty contribution of each input parameter on 

the result can be calculate using its partial derivative 

                                          𝑢𝑖(𝑦) =
𝜕𝑦

𝜕𝑥𝑖

∙ 𝑢(𝑥𝑖)                   (4) 

Finally, the law of uncertainty propagation is used to 

calculate the standard uncertainty of the result, which 

represents a level of confidence of 67%. 

                                       𝑢(𝑦) = √∑ 𝑢𝑖
2(𝑦)

𝑛

𝑖=1

                     (5) 

The GUM method uses a term called ‘expanded’ 

uncertainty U(y). It is defined as 

                                       𝑈(𝑦) = 𝑘 ∙ 𝑢(𝑦)                            (6) 

It includes the coverage factor k. k=2 represents a level of 

confidence of 95% if the result is normal distributed. The 

coverage factor should be always stated, if the extended 
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uncertainty is presented to be able to recalculate the 

standard uncertainty. Due to its structured type the 

method can be well automated and implemented in 

software applications. This investigation has been 

supported by the software tool ‘GUM Workbench®’ [3]. 

 

 

3 Experimental method 

3.1 Cobra-head pneumatic five-hole probe 

The method of the uncertainty evaluation will be 

demonstrated on a miniature cobra-head pneumatic five-

hole probe (see Figure 2). This probe uses four tubes 

arranged around a center tube to measure the pressure in 

a flow path of a turbomachine. The tip of the probe is 

shaped as a pyramid such that all holes are facing a 

different direction. It has a diameter of 0.9 mm. The 

advantage of the cobra-head shape is that all holes on the 

circumference of the probe head show a similar pressure 

sensitivity to angle variations. A further advantage is the 

large distance (about 5 tip diameter) of the measurement 

volume from the probe body. 

 
Fig. 2. Cobra-head pneumatic five-hole probe 

Depending on the incoming flow, the holes of the 

probe will experience a certain pressure. Figure 3 shows 

the contours of the hole pressures for different yaw and 

pitch angles, non-dimensionalized with the flow total and 

static pressure according to equation (7). The center hole 

has a low pressure sensitivity to angle variations. In the 

center position it functions like a pitot probe, which can 

be seen by a Cp value of 1, which is identical to the flow 

total pressure. 

                        𝐶𝑝𝑖 =
𝑝𝑖 − 𝑝𝑠

𝑝𝑡 − 𝑝𝑠

 with i = 1 … 5                 (7) 

 
Fig. 3. Pressure coefficient contours of a five-hole probe at 

Ma=0,25 

 

3.2 Freejet calibration facility 

Aerodynamic probes can be calibrated in the freejet 

facility of the ETH Turbomachichery Laboratory up to 

Mach numbers of 0.9. Therefore a probe can be mounted 

in a traversing system, which allows a yaw angle variation 

of ±360° (Δφc,T= ±0.01°). This probe support system is 

fixed to a table, which can be inclined between pitch 

angles of ±30° (Δγc,T= ±0.015°). A computer system 

controls automatically the probe positioning, the data 

acquisition as well as the operation of the calibration rig. 

The axisymmetric freejet flow has a uniform velocity 

profile and a turbulence level of about 0.3%. The diameter 

of the nozzle exit is 100mm. A stochastic deviation 

between the aerodynamic and geometric flow angle has 

been determined to be ΔφcR= ΔφcR= ±0.015°. 

 
Fig. 4. Freejet probe calibration facility 
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3.3 Axial turbine test rig LISA 

The turbine test rig considered for this investigation is the 

axial turbine facility ‘LISA’ of the ETH Turbomachinery 

Laboratory. Mach numbers within the turbine flow are in 

the range of 0.1 to 0.6. The height of the flow path is 70 

mm. More details on the rig and the turbine flow fields 

can be found in Behr et al. [4]. Area traverses within the 

turbine can be performed by using an automated multi-

axis probe traversing system with an positioning accuracy 

of Δφm,T= Δγm,T= ±0.015°. 

3.4 Probe pressure data acquisition system 

A mobile unit containing 5 Keller differential pressure 

sensors (PR33X, 0.5bar) and 1 Keller absolute pressure 

sensor (PAA33X, 1bar) is used for measuring the probe 

pressures relative to atmosphere and the atmospheric 

pressure. The accuracy of these sensors is 0.05% FS. The 

same unit is used for calibration and measurement. Since 

the unit can be placed close to the probe, the total length 

of the pressure tubes from probe tip to sensor reduces to 

about 1m, which yields a short pressure settling time. 

4 Uncertainty of flow yaw and pitch 

angle 

4.1 Description of the measurement chain 

To derive flow angle information of turbine flows, angle 

sensitive pressures probe are commonly used. Before a 

probe can be used it has to be calibrated within a reference 

flow. For this purpose the uniform freejet flow provides a 

flow field with well know parameters. The probe head is 

positioned in the center region of the flow where 

streamlines are supposed to be parallel. During the 

calibration the probe will be inclined according to a matrix 

of different yaw and pitch angles relative to the flow. For 

each position the pressures of all probe holes will be 

recorded. From these pressures the calibration 

coefficients for the yaw (Kφ) and the pitch axis (Kγ) can 

be calculated. In this way every adjusted yaw and pitch 

angle position of the probe can be assigned to a pair of Kφ 

and Kγ. 

Later during the probe application within an unknown 

turbine flow the pressures at the probe tip will be 

recorded. From these the coefficients Kφ and Kγ can be 

calculated. These pair of coefficients can be related 

clearly to a pair of yaw and pitch angles by using the 

calibration information. 

4.1.1 Step 1 – Model of the measurement chain 

The algorithm which has been explained in the previous 

section has been put into a flow chart diagram (see Figure 

5). It is divided into two logical parts, which are the 

calibration of the probe and the measurement in an 

unknown flow. The yellow boxes represent values of 

uncertainty of parameters, whereas the blue boxes stand 

for mathematical conversions. In this way the propagation 

of uncertainties into the final result can be visualized. The 

sources of uncertainty are especially indicated and will be 

discussed in the next section. 

The calibration coefficients Kφ and Kγ are defined as 

follows: 

                              𝛫𝜑(𝜑, 𝛾, 𝑀𝑎) =
𝑝2 − 𝑝3

𝑞
                     (8) 

and 

                               𝛫𝛾(𝜑, 𝛾, 𝑀𝑎) =
𝑝4 − 𝑝5

𝑞
                     (9) 

To non-dimensionalize the coefficients and to relate 

the angle-sensitive pressure differences to the flow 

dynamic head, a denominator q is defined as: 

                                        𝑞 = 𝑝1 −
1

4
 ∑ 𝑝𝑖

5

𝑖=2

                     (10) 

Figure 6 shows the distribution of calibration 

coefficients Kφ and Kγ with respect to yaw and pitch 

angles at a constant Mach number of Ma=0.25. From the 

contour lines it can be clearly seen that each coefficient 

shows a nearly constant 

 
Fig. 5. Uncertainty propagation of flow angle measurement 
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Fig. 6. Distribution of calibration coefficients with respect to 

yaw and pitch angles at Ma = 0.25, a) Κφ b) Κγ 

gradient in its direction of sensitivity and a zero gradient 

in the orthogonal direction. This fact confirms that both 

coefficients are well decoupled. 

4.1.2 Step 2 – Uncertainty information 

Probe Position, Reference Flow 

Angle uncertainties arising from the probe traversing 

systems and the deviation of the reference are given by 

the specification of the experimental facilities. Since no 

better information are available rectangular distributions 

are assumed for the parameter uncertainties. 

Model Fit 

After the calibration angles and calibration 

coefficients are related as 

                              𝛫𝜑(𝜑, 𝛾) and 𝛫𝛾(𝜑, 𝛾)                      (11) 

For the post processing of measurement data these 

relation has to be inverted to 

                          𝜑(𝛫𝜑, 𝛫𝛾) and 𝛾(𝛫𝜑, 𝛫𝛾)                   (12) 

in order to get direct expressions of φ and γ. One 

possibility is to approximate the functions of (12) with 

two-dimensional polynoms in the form 

                        𝜑 = ∑ ∑ 𝑎𝜑,𝑖𝑗 ∙ 𝛫𝜑𝑖 ∙ 𝛫𝛾𝑗

𝑛

𝑗=0

𝑚

𝑖=0

                (13) 

                          𝛾 = ∑ ∑ 𝑎𝛾,𝑖𝑗 ∙ 𝛫𝜑𝑖 ∙ 𝛫𝛾𝑗

𝑛

𝑗=0

𝑚

𝑖=0

                (14) 

A least square fit method can be applied to determine 

the polynomial coefficients. The degree of the polynom 

will define how well it fits to the points of the calibration. 

Higher order polynoms are more likely to have a good fit 

on the points of the calibration, however they are also 

more likely to introduce unphysical oscillation in between 

the calibrated points. Lower order polynoms are more 

continuous, but will have difficulties to fit a wider range 

of calibrated flow angles. The quality of the polynomial 

fit can be determined by calculating the difference of the 

calibrated flow angles and the angles which are derived 

by the polynomial approximation. 

An alternative to polynoms can be the use of look-up 

tables. In this case the parameters of (11) are rearranged 

according to (12). Any angle in between the calibrated 

points will be calculated by a two-dimensional 

interpolation, preferably of second or third order. 

In order to decide which method is better the following 

consideration can be made. The best known description of 

the freejet reference flow is given at the calibrated angular 

positions. The uncertainty at these points can be reduced 

further by using averages out of repeated pressure 

measurements. A polynomial approximation, which 

deviates also at the calibrated angular positions, will 

therefore increase the uncertainty. In case of look-up 

tables, these points can be reproduced exactly. For angular 

position in between the calibrated points, the two-

dimensional interpolation of low order yields values, 

which are on a continuous surface in between the 

supporting points. For these reasons look-up tables should 

be favored. 

Pressure DAQ 

Another source of uncertainty comes from the 

pressure data acquisition system. The measurement of the 

probe pressures is associated with an uncertainty 

depending on factors such as accuracy, stability, 

sensitivity of the pressure sensor, resolution of the DAQ 

boards, etc. In the current case the specification of the 

manufacturer yielded the required information. Since no 

information on the distribution have been available a 

rectangular distribution has been assumed. The pressure 

uncertainties will propagate into the calibration 

coefficients Kφ and Kγ. In order to determine their effect 

on the angles, the analytical descriptions of equations 

(13,14) of the relation between angles and calibration 

coefficients have been used. For this purpose an exact fit 

on the calibration data can be assumed. 

Further sources of uncertainty are eliminated if for 

calibration and measurement the same pressure 

measurement system is used. The mobile pressure 

measurement unit of the current investigation has been 

designed to follow this idea. 

4.1.3 Step 3 – Uncertainty calculation 

According to the flow chart of Figure 6 the uncertainties 

have been calculated for a selection of calibrated angular 

positions each at 4 different Mach numbers. 

The fit of the polynomial model has been calculated at 

all calibrated points. The resulting difference could be 

summarized for each Mach number with a value of the 

standard deviation based on a normal distribution. The 

uncertainty of the model fit has been included in the 

calculation in this format. 

The fit of the look-up table has been assumed to be 

ideal, with a zero uncertainty. 

The uncertainty of the pressure measurement has been 

calculated for each of the selected sample points. 

4.1.4 Step 4 – Results 

To evaluate the contribution of each source of uncertainty 

on the overall uncertainty the square of the propagated 

uncertainties 𝑢𝑖
2(𝑦) can be compared. Figure 7 shows the 

shares of uncertainty of one example point at four 

different Mach numbers. It can be seen that the traversing 

systems as well as the angle deviations of the reference 

flow do not contribute significantly to the overall 

uncertainty. The model fit of the calibration polynom 

gives at all Mach numbers a constant contribution. 
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Uncertainties of the pressure measurement system are 

dominant at low Mach numbers (Ma=0.16) and negligible 

at higher Mach numbers (Ma=0.53). It is therefore of high 

importance for an optimal angle uncertainty to select an 

appropriate sensor pressure range. 

The contribution of calibration and measurement on 

the overall uncertainty is illustrated in Figure 8. In this 

case, at higher Mach numbers (Ma=0.53) the polynomial 

fit contributes with over 95% to the angle uncertainty. 

 
Fig. 7. Square of propagated uncertainties 𝑢𝑖

2(𝑦) [ 𝑜2
] of four 

Mach numbers [-] a) Calibration b) Measurement (using 

Calibration polynoms) 

 
Fig. 8. Uncertainty contribution of calibration and measurement 

of four Mach numbers [-] (using Calibration polynoms) 

The expanded uncertainties of flow yaw and pitch 

angle versus Mach number are illustrated in Figure 9. The 

uncertainties of 8 different sample points have been 

averaged to create these graphs. A coverage factor of k=2 

has been applied to derive the expanded uncertainty. 

Therefore the values shown have a level of confidence of 

95% and are normal distributed. It can be seen that the 

uncertainty increases exponentially towards low Mach 

numbers if the pressure sensors are kept the same. With 

the experimental setup investigated the expanded 

uncertainty at low Mach numbers (Ma=0.14) increases up 

to u(y)=±1°, whereas at high Mach numbers (Ma=0.53) 

they are as low as u(y)=±0.3° if calibration polynoms are 

used. If the uncertainty of the polynoms can be replaced 

by the lower uncertainty of look-up tables, the angle 

uncertainty reduces at the same Mach number to 

u(y)=±0.1°. 

 
Fig. 9. Expanded uncertainty (k=2) of the yaw and pitch angle 

derived with a) Calibration polynoms b) Look-up tables 

5 Uncertainty of total and static 

pressure 

5.1 Description of the measurement chain 

The uncertainty evaluation for flow total and static 

pressure follows the same procedure as described in detail 

for the flow angles. For this reason, the following section 

will concentrate on specific issues related to the flow 

pressures. 

The calibration of probe angle related total and static 

pressure is done in within the calibration procedure 

described in the previous section. The total pressure of the 

calibration region of the freejet is measured upstream in 

the nozzle. The difference to the flow region is determined 

analytically. The static pressure at the probe head can be 

derived from the atmospheric pressure. 

5.1.1 Step 1 – Model of the measurement chain 

The calibration coefficients Kt and Ks are defined as 

follows: 

                         𝐾𝑡(𝜑, 𝛾, 𝑀𝑎) =
𝑝𝑡 − 𝑝1

𝑞
                       (15) 

and 

                           𝐾𝑠(𝜑, 𝛾, 𝑀𝑎) =
𝑝𝑡 − 𝑝𝑠

𝑞
                     (16) 

with q as defined in equation (10). 

 
Fig. 10. Distribution of calibration coefficients with respect to 

yaw and pitch angles at Ma = 0.25, a) Kt, b) Ks  
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Fig. 11. Uncertainty propagation of total and static pressure 

measurement – Method A 

Figure 10 shows the contours of Kt and Ks at a Mach 

number of Ma=0.25. Kt becomes zero at the probe center 

position since pressure at probe hole 1 is equal to the total 

pressure. 

 

 

5.1.2 Step 2 – Uncertainty information 

Probe Position, Reference Flow 

The uncertainty introduced by the reference flow has 

already been described in the previous section. The 

accuracy of total and static depends on the differential 

pressure gauges of the freejet. 

Model Fit 

Similar to the angle post processing procedure the 

relation of calibration angles and calibration coefficients 

has to be change from 

                               𝐾𝑡(𝜑, 𝛾) and Ks(𝜑, 𝛾)                        (17) 

to 

                              𝜑(𝐾𝑡, 𝐾𝑠) and 𝛾(𝐾𝑡, 𝐾𝑠)                   (18) 

For this operation the two options, polynomial 

approximation and look-up table are possible and have 

been evaluated. 

Pressure DAQ 

Uncertainties of the pressure data acquisition will 

propagate in this case into the calibration coefficients Kt 

and Ks. They have been analytically evaluated in the same 

way as described for the angle uncertainties. 

Flow Angles 

According to the procedure described in Figure 11 the 

flow angles are needed to determine the coefficients Kt 

and Ks. The procedure for determining these angles and 

their associated uncertainty has been explained in detail in 

the previous section. 

5.1.3. Step 3 – Uncertainty calculation 

According to the flow chart of Figure 11 the uncertainties 

have been calculated for a selection of calibrated angular 

positions each at 4 different Mach numbers. 

5.1.4 Step 4 – Results 

Figure 12 shows the shares of uncertainty of one example 

point at four different Mach numbers. In Figure 12 a) it 

can be seen that within the calibration the pressure 

measurement contributes the most to the uncertainty of 

the calibration coefficients Kt and Ks. In the presented 

case which uses calibration polynoms, the model fit 

uncertainty increases slightly with higher Mach numbers. 

Figure 12 b) shows the uncertainty of the total pressure 

of calibration and measurement. In this graph the 

influence of the calibration is marked with the green bars. 

The measurements of the probe pressures and the 

atmospheric pressure have a Mach number independent 

constant contribution to the overall uncertainty. 

Everything that contributes 
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Fig. 12. Square of propagated uncertainties 𝑢𝑖

2(𝑦) of 4 Mach 

numbers a) Calibration ΔKt2 [-] b) Calibration and measurement 

ΔPt2 [Pa2] (using Calibration polynoms) 

to the uncertainty of the calibration coefficients Kt and Ks 

has an increased influence on the total overall uncertainty 

with increasing Mach numbers. This important effect is 

due to the following reason. The total pressure is 

calculated after equation (19). 

                   𝑝𝑡 = 𝑝1 + 𝐾𝑡 ∙ (𝑝1 −
1

4
∑ 𝑝𝑖

5

𝑖=2

)               (19) 

The uncertainty of the first term, the absolute pressure 

P1=Patm + dP1, is rather unaffected by the Mach number. 

The uncertainty of the second term, is defined by two 

counteracting, Mach number dependent effects. The 

calibration coefficient Kt decreases with increasing Mach 

number. However, its contribution to the overall 

uncertainty of Pt is influenced also by the partial 

derivative ∂Pt/∂Kt which is the term q if equation (10). 

This term proportional to the dynamic head of the flow 

and is large at high Mach numbers. Therefore small 

uncertainties in Kt get amplified by q at high Mach 

numbers and result in higher uncertainties of the total 

pressure Pt. 

 
Fig. 13. Expanded uncertainty (k=2) of the total pressure and 

static pressure derived with a) Calibration Polynoms b) Look-up 

tables 

The same effect can be seen in Figure 13 a) which 

shows the averaged result of the extended uncertainty of 

8 sample points that have been evaluated. 

Figure 13 b) shows the overall pressure uncertainties 

if look-up tables are used. In this case the model fit 

uncertainty is assumed to be zero. Hence, the uncertainty 

of the calibration and the flow angles reduces, which 

results in a nearly constant uncertainty of the flow 

pressures at the entire range of Mach numbers considered. 

5.2 Alternative methods for deriving total and 

static pressure 

The method for deriving total and static pressure 

presented in Figure 11 uses the flow yaw and pitch angle 

as input parameters for the calibration model. Since these 

angles are as well derived from a calibration model (see 

Figure 5) they will introduce an uncertainty to the total 

and static pressure. It is therefore reasonable to consider 

an alternative approach which uses directly the probe 

pressures as input values for a calibration model. Such an 

algorithm is presented in Figure 14. In this case the 

calibration coefficients Kt and Ks are directly related to 

Kφ and Kγ in a calibration model. There are no angles 

needed to derive the pressure parameters. 

                       𝐾𝑡(𝛫𝜑, 𝛫𝛾) and K𝑠(𝛫𝜑, 𝛫𝛾)                  (20) 

The disadvantage of this method is a higher 

uncertainty of the Kt and Ks coefficients, which gets 

propagated from the Kφ and Kγ coefficients. In both, 

calibration and measurement these coefficients are 

calculated out of the probe pressures. 

A comparison of both methods for determining total 

and static pressure comes to the following conclusion. If 

the uncertainty introduced by the fit of the calibration 

model can be neglected, both methods presented will be 

of similar uncertainty. The uncertainty of the calibration 

coefficients Kφ and Kγ comes in through the flow angles 

in Method A (Figure 11), whereas in Method B (Figure 

14) it goes into the calibration model of Kt and Ks. Only 

if the fit of the calibration models is less accurate, Method 

B would be advantageous, since only one calibration 

model has to be used to derive the pressures. 

Another improvement can be made for the derivation 

of the static pressure by using a different definition for the 

coefficient Ks 

                         𝐾𝑠(𝜑, 𝛾, 𝑀𝑎) =
𝑝1 − 𝑝𝑠

𝑞
                     (21) 

In this case the uncertainty related to the total pressure 

can be removed (see equation (16)). This definition has 

been successfully used by Pfau [5]. 
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Fig. 14. Uncertainty propagation of total and static pressure 

measurement – Method B 

6 Conclusions 

The paper presents a probabilistic method for evaluating 

uncertainties in measurements and its application to 

pressure probe measurements in turbomachines. The 

following conclusions can be drawn from the 

investigation: 

Method 

• The GUM [1] standard describes a conclusive, 

well structured and universal method for 

evaluating uncertainties in measurements. 

• The method is able to combine different types of 

uncertainty information by converting all of 

them into probability distributions and 

propagating the uncertainties with the Gaussian 

error propagation formula. 

• The resulting uncertainty statement contains the 

limits and the associated distribution of the 

measurement parameter. It is differentiated 

between standard and extended uncertainties 

(see Figure 15). 

 
Fig. 15. Normalized normal distribution of uncertainty u(y) with 

marked range of standard and extended uncertainty 

Uncertainty of Flow Angles 

• The uncertainty of the probe pressure 

measurement has a significant influence on the 

flow angle uncertainty. It is advisable to keep the 

measured probe pressure within the favorable 

range of the pressure gauges, i.e. by having an 

adequate sensor back pressure or dedicated 

sensors for each pressure range. 

• The fit of polynomial calibration models has a 

nearly constant contribution to the uncertainty 

over the Mach number range considered. 

• It is suggested to use look-up tables instead of 

polynomial calibration models to reduce 

uncertainties due to polynomial data fitting. 

Uncertainty of Flow Pressures 

• The influence of the uncertainty of the 

calibration coefficients Kt and Ks on the total 

and static pressure uncertainties gets stronger 

with increasing Mach numbers. Therefore 

smaller uncertainties of the calibration 

coefficients at higher Mach numbers cause the 

overall uncertainty of the flow pressures to rise. 

• Uncertainties of the calibration model can be 

reduced by the use of look-up tables. 

• The use of models that relate the calibration 

coefficients Kt and Ks to Kφ and Kγ, instead of 

φ and γ, is found to cause similar uncertainty of 

the flow pressures, if the uncertainty due to the 

calibration model fit is low. 

MTT 2020
E3S Web of Conferences 345, 02001 (2022) https://doi.org/10.1051/e3sconf/202234502001

9



• The uncertainty of the static pressure can be 

reduced if the associated calibration coefficient 

does not include the flow total pressure. 

7 Acknowledgments 

The authors would like to thank D. Farenkopf, Dr. A. Pfau 

and Dr. R. Kessel for their support and helpful discussions 

during the preparation of this paper. 

References 

1. ISO: Guide to the Expression of Uncertainty in 

Measurement (GUM), 1st edition, 1993, corrected 

and reprinted 1995, International Organisation for 

Standardisation (Geneva, Switzerland), ISBN 92-67-

1011889. 

2. K. Weise, W. Wöger, Messunsicherheit und 

Messdatenauswertung, WILEY-VCH Verlag, ISBN 

3-527-29610-7, 1999. 

3. GUM Workbench®, Metrodata GmbH, 

www.metrodata.de. 

4. T. Behr, A. I. Kalfas, R. S. Abhari, Unsteady Flow 

Physics and Performance of a One-and-1/2-Stage 

Unshrouded High Work Turbine, Proceedings of the 

ASME Turbo Expo 2006, GT2006-90959 (2006) 

5. A. Pfau, Loss Mechanisms in Labyrinth Seals of 

Shrouded Axial Turbines, ETH dissertation No. 

15226, ETH Zurich (2003)

 

MTT 2020
E3S Web of Conferences 345, 02001 (2022) https://doi.org/10.1051/e3sconf/202234502001

10

http://www.metrodata.de/

