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Abstract. Supplementary cementitious materials have been proven to be 
effective partial cement replacements in concrete to reduce greenhouse gas 
emissions from the use of ordinary Portland cement. In this study, artificial 
neural network was used to arrive at a predictive model to assess their effects 
in the compressive strength of concrete. Collection of 991 datasets from 
published literatures was done for the development of the best network 
model with acceptable root mean square error for both training and testing 
datasets. The supplementary cementitious materials were ranked 
accordingly using the improved stepwise method and network simulation. 
From the results, ground granulated blast-furnace slag with 15% cement 
replacement and silica fume with 30% cement replacement contributed to 
the highest increase in compressive strength.  

1 Introduction 

Concrete is used with a utilization rate of three tons per person per year [1]. The common 
ingredients of concrete are cement, water, coarse aggregates, fine aggregates, and admixtures. 
The production of ordinary Portland cement (OPC) causes substantial pollutants on air 
contamination and solid waste. Additionally, the production of OPC accounts to 
approximately 8% of greenhouse gas emissions globally [2]. Thus, alternative materials must 
be explored as substitute to cement. To replace cement, the use Supplementary Cementitious 
Materials (SCM) are introduced. These are pozzolans that possess minimal or no 
cementitious properties but can act as binder in the presence of water [3]. Some SCMs were 
found to be abundant or by-products possessing either artificial or natural pozzolans [4]. Two 
primary forms are hydration and chemical reactivities to provide substantial effect in 
concrete. Common SCMs like coal fly ash (CFA), rice husk ash (RHA), silica fume (SF), 
sugarcane bagasse ash (SCB), coal bottom ash (CBA), and ground granulated blast furnace 
slag (GGBFS) are used for machine learning,  specifically Artificial Neural Network (ANN).  
Machine learnings methods like ANN, are methodologies that can be developed to arrive at 
acceptable predictive models [5]. The two types of ANN are: unsupervised and supervised 
learning. Supervised learning is used to develop predictive models from inputs to outputs [6] 

 
* Corresponding author: jason.ongpeng@dlsu.edu.ph 

  

E3S Web of Conferences 347,        
ICCEE 2022

0 (2022) https://doi.org/10.1051/e3sconf/2022347020042004 

  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



 

 

while unsupervised learning finds similarities of the inputs without the outputs. In this study, 
supervised ANN is considered. 

This paper investigated the complex and nonlinear behavior of combined SCMs to 
arrive at an optimum balance on the use of SCM resources. The outline of the paper are as 
follows: Section 2 presents the materials and methods from data gathering to ranking; Section 
3 are the results and discussions, best model, ranking using the improved stepwise method 
(ISM), and model simulation to warrant soundness of the best ANN model; and Section 4 
summarizes the conclusions and recommendations.  

2 Materials and methods 

Fig. 1 shows the research design from data gathering collected from published literatures, 
data processing in the normalization of datasets, data analysis on the use of ANN modelling 
procedures, and data ranking using ISM.  

 

 
Fig. 1. Research design. 

 
Table 1 is a summary of data collected from literature, indicating the references, number of 
datasets, and type of SCMs. The total number of datasets initially was 1,130 and then reduced 
to 991 after data processing, i.e., eliminating the outliers to be included in the ANN modeling. 
Table 2 shows the number of data, mean, minimum and maximum values, and standard 
deviation of the 991 datasets. 

Data analysis using supervised learning through back propagation ANN was used. The 
software used was MATLAB R2020b with Statistics and Machine Learning Toolbox™. It 
consists of three datasets randomly divided to 70% training, 15% testing, and 15% validation 
datasets. The activation function used was sigmoid function. Sigmoid function is a logistic 
function with results ranging from zero to one. Normalization of the datasets prior to training 
is suggested to achieve the best performance [59]. The 13 inputs are: cement, RHA, GGBFS, 
CFA, SCB, SF, CBA, water, SCM chemical properties, sand, gravel, curing time, and 
admixture, while the output is the compressive strength (CS) of concrete. The best ANN 
model is selected based on the root mean square error (RMSE). Ideally, an RMSE close to 
zero is desired, which indicates that the predicted value using the model is close to the actual 
value. Thirteen input nodes were used: cement, RHA, GGBFS, CFA, SCB, SF, CBA, water, 
SCM chemical properties, sand, gravel, curing time, and admixture, with units shown in 
Table 2. The chemical properties were defined as the summation of SiO2, Al2O3, Fe2O3 as 
per ASTM C618 for SCMs. 
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Table 1. Summary of data from published literature. 

References 
Number 
of data 

SCM  
used 

References 
Number 
of data 

SCM 
used 

[7] 6 CBA [35] 8 RHA
[8] 56 CFA [35] 6 CFA
[9] 8 RHA [36] 9 RHA

[10] 30 RHA [37] 56 RHA
[11] 8 SCBA [38] 16 RHA
[12] 12 SCBA [39] 10 SF
[13] 24 CFA [40] 23 RHA
[14] 12 CBA [41] 8 RHA
[15] 6 CFA [42] 40 RHA
[16] 27 RHA [43] 12 RHA
[17] 38 RHA [44] 24 SF
[18] 8 CFA [45] 8 GGBFS 
[19] 35 CBA [45] 8 CFA
[20] 16 CBA [45] 4 GGBFS 
[21] 27 RHA [46] 21 SF
[22] 5 RHA [47] 4 CBA
[23] 28 SF [48] 36 CFA
[24] 13 CFA [49] 18 CBA
[25] 10 SF [50] 66 RHA
[26] 26 RHA [51] 3 CFA
[27] 5 CFA [52] 2 CBA
[28] 10 CBA [52] 56 SF
[29] 20 RHA [53] 36 RHA
[30] 42 CFA [54] 10 CFA
[31] 3 RHA [55] 28 RHA
[32] 2 RHA [56] 60 RHA
[33] 21 RHA [57] 9 RHA
[34] 6 RHA [58] 6 CBA
[34] 3 SF

 
Table 2. Descriptive statistics of the 991 datasets. 

Properties 
Number  
of data

Mean 
Std. 
Dev

Max. Min. 

Cement content (kg/m3) 991 376.3 90.92 783 31 

RHA content (kg/ m3) 455 36.7 49.66 230 0 

GGBFS content (kg/ m3) 15 3.7 31.48 340 0 

CFA content (kg/ m3) 215 20.0 44.70 200 0 

SCB content (kg/ m3) 11 0.5 5.77 100 0 

SF content (kg/ m3) 108 7.0 21.88 102.8 0 

CBA content (kg/ m3) 75 9.4 42.21 562 0 

Water content (kg/ m3) 991 191.6 36.91 300.5 100 

Sand (kg/ m3) 989 687.0 175.00 1293 0 

Gravel (kg/ m3) 991 1051.0 235.09 1600 436 

Curing Time (Days) 991 43.6 60.79 400 1 

Admixture (kg/ m3) 552 5.3 15.51 142.8 0 

Compressive Strength (MPa) 979 35.9 21.21 106.88 0 
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A process of conducting sensitivity analysis for data ranking using ISM for the same 
developed network was proposed [60]. Each input is blocked, with a value equal to zero 
individually to locate the variable causing the largest error. Fig. 2 describes the process. Row 
“A” in the figure is when all inputs are turned to zero with the highest error being considered. 
Once the largest error is achieved, the values are converted to its mean. This is repeated as 
seen in rows "B" and "C" in the figure until all input nodes are converted to its mean. The 
order in which the variables are converted to its mean is the ranking influence where the first 
one is the most influential. 

 

 
Fig. 2. ISM process. 

3 Results and discussion 

Data analysis on correlation was made using Python and Jupyter to investigate the 
collinearity of independent variables to the dependent variable. Fig. 3 shows the collinearity 
plot using the 991 datasets. The highest collinearity is seen in the cement and SF. This 
indicated that increasing the contents of the said constituents can increase the compressive 
strength. 

Fig. 4 shows the result of the RMSE for both training and testing data with varying 
hidden nodes from 1 to 20. It showed that 8 hidden neurons performed best with the lowest 
RMSE in training followed by the lowest RMSE during validation. The best ANN network 
of 13 inputs – 8 hidden nodes – 1 output is shown in Fig. 5 with its normalized value of actual 
compared to predicted values shown in Fig. 6. 

 

  

E3S Web of Conferences 347,        
ICCEE 2022

0 (2022) https://doi.org/10.1051/e3sconf/2022347020042004 

4



 

 

 
Fig. 3. Collinearity Plot of Compressive Strength Dataset. 

 

 
Fig. 4. RMSE Training and Validation Data with varying number of hidden nodes. 
 

 
Fig. 5. Best ANN model 13 inputs – 8 hidden – 1 output. 
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Fig. 6. Actual vs predicted values of normalized compressive strength using the best ANN model. 

Using ISM, the ranking of SCMs were determined as shown in Table 3. It showed that 
SF ranked the first followed by GGBFS. The addition of SF alone decreases compressive 
strength due to its low content of tricalcium aluminate. However, when SF is mixed with 
other SCMs, it resulted to favorable results [44]. Simulation was conducted to investigate the 
combined SCMs interaction with CS of concrete. This was done by making all input 
parameters as the mean value except for the one parameter that is being investigated. The 
result of the simulation is shown in Fig. 7. The RMSE of the simulation of the chosen model 
was 0.1183. It showed that the GGBFS had the highest positive contribution to CS at 15% 
replacement and had adverse effect afterwards. The replacement of cement using SF was 
linearly increasing.  
 

Table 3. Sensitivity analysis rankings for compressive strength. 
ISM RANK SCMs

1 SF
2 GGBFS
3 RHA
4 SCB
5 CBA
6 CFA
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Fig. 7. Concrete’s Compressive Strength with varying SCMs. 

 

4 Conclusions and recommendations 

The use of SCMs in the construction industry must be encouraged to address the 
environmental effects brought about by the productions of OPC. With the combination of 
possible SCMs in concrete, complex and nonlinear relationships were encountered in this 
study. ANN was used as a machine learning tool, utilizing 991 datasets to arrive at the best 
predictive model for the compressive strength of concrete. The best network architecture 
contains 13 inputs – 8 hidden nodes – 1 output. The 13 inputs are cement, RHA, GGBFS, 
CFA, SCB, SF, CBA, water, SCM chemical properties, sand, gravel, curing time, and 
admixture, while the output is the compressive strength of concrete. Ranking of SCMs 
influence was done using ISM to determine the SCMs with the greatest influence. In addition, 
simulation was done to further investigate the behavior of each SCM to the compressive 
strength of the concrete. Results showed that the SCMs which contributed to the highest 
increase of compressive strength in concrete was GGBFS and SF with a replacement of 15% 
and 30%, that can achieve more than 100% and 18% increase in compressive strength, 
respectively. Further investigation on the complex interaction of SCMs with each other, 
additional datasets, and comprehensive understanding of the chemical reactions in the 
constituents towards concrete properties is recommended.  
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