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Abstract. Near real-time fine-resolution land surface phenology (LSP) prediction is essential for

understanding surface attributes and ecosystem functions, and solving important ecological processes
related to phenology at the landscape scale. In this paper, we applied the Enhanced Spatial and Temporal
Adaptive Reflectance Fusion Model (ESTARFM) to fuse image pairs of Landsat 8 and Moderate-resolution
Imaging Spectroradiometer (MODIS) as train data, and then applied the first derivative method to retrieve
phenophase transition dates from fused time series of satellite data as label data. The convolutional neural
network (CNN) model was trained using fusion images as inputs and the label data as targets. The trained
model was further used to predict LSP dates from individual Landsat images. As evaluated using the
reference data, the predict land surface phenological dates and could match the reference well with the
coefficient of determination of 0.77 and root mean squared errors of 3.535, and our study provides an

alternative method to predict land surface phenological dates using individual Landsat images.

1 introduction

Land surface phenology (LSP) denotes the periodic
patterns of variation and dynamics in vegetated land
surface observed from remote sensing[1]. LSP derived
from satellites reflects the responses of the land surface,
mostly terrestrial ecosystems, to both climatic and
anthropogenic forcings[2]. LSP information has also
found helpful to a broad range of applications such as
land use and land cover mapping, land surface change
quantification, and land surface modeling[3].

As remote sensing could provide large-scale
observations of the land surface at regular temporal steps,
retrieving LSP information from satellite data such as
MODIS data has received increasing interests in
studies[4]. As this data missed spatial details on the
landscapes, particularly in heterogeneous areas that
include a mixture of multiple land cover types. As plant
function types and vegetation communities have varied
responses to climate variation and human disturbances
there is a need to develop fine-spatial-resolution
phenological products to meet both scientific and
applicable demands. Fortunately, with the development
of data fusion techniques, integrating data from different
sensors has become feasible to obtain consistent data at
fine spatial and temporal resolutions. Feng, Masek et al.
(2006)[5] developed a spatial and temporal adaptive
reflection fusion model (STARFM) to fuse both Landsat
and MODIS data and obtained land surface reflectance
data at the spatial resolution of Landsat and the temporal
resolution of MODIS. Zhu, Chen et al. (2010)[6]
developed an enhanced spatiotemporal adaptive
reflection fusion model (ESTARFM) based on the
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STARFM algorithm with improved accuracy of data
fusion. There are also a number of following studies that
developed to fuse satellite data acquired from different
sensors. These approaches provide key fused data for
studying LSP at fine-spatial resolution.

A series of studies have shown that convolutional
neural networks (CNN) have potentials and advances in
remote sensing studies. CNN has been found effective in
representing spatial patterns and extracting vegetation
features from remote sensing images. Qi Yang et al.
(2020)[7] extracted the near real-time phenology of rice
from UAV images based on CNN. Cao et al. (2021)[8]
retrieved phenological dates of deciduous broadleaf trees
from near-surface camera images using CNN. It is
worthy testing CNN on mapping LSP from remote
sensing images.

The main purpose of this study are as follows: 1)
proposes a model based on data fusion method and CNN
to predict near real-time fine-spatial-resolution LSP; 2)
Based on the specified individual Landsat 8 image, the
deep learning model is used to predict the date far away
from the phenophase transition date.

2 Study area and materials

2.1 Study area

We selected regions with a window size of 3000 x 3000
pixels (Fig.1) from Landsat images (Path 122 Row36,)
as the study area. The latitude of the study area ranges
from 34°N to 35°N. The study area mainly involves
Shandong, Henan and Jiangsu provinces in the North
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China Plain in China. It has typical monsoon climate and
covers a variety of land cover types such as woodland,
farmland, grassland, and wetland.
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Fig.1. The location of the study area

2.2 Materials

We downloaded all available Landsat 8 images acquired
in the year of 2018 for the studied four scenes from the
website United States Geological Survey

(https://earthexplorer.usgs.gov/). To ensure the accuracy
and reliability of data fusion, we only used Landsat 8
OLI data with cloudiness less than 10% in each scene.
We obtained MODIS Collection 6 land surface
reflectance products (MODO09A1) at the spatial
resolution of 500 m from
https://ladsweb.nascom.nasa.gov/search,

and the MODIS data that cover the studied Landsat
scenes come from the tile of h27v05.

3 Methodology

3.1 Algorithm in prediction near real-time LSP

In the process of prediction near real-time LSP. Briefly,
we pre-process the Landsat data and MODO09A1 data.
since ESTARFM spatiotemporal fusion algorithm can
effectively  preserve  the  spatial  details of
non-heterogeneous landscapes so we applied the
ESTARFM to fuse Landsat 8 and MODO09A1 data to
obtain the training data. Then, calculate the EVI time
series data through the fusion data, and use the EVI time
series data to retrieving SOS and EOS, and calculate the
days away from phenophase transition dates(eq.1)
through SOS and EOS to obtain the label data
corresponding to the training data. Finally, a
convolutional neural network structure was designed to
predict the LSP (Fig. 2), and the CNN model is trained
through training data and label data, In training the
model using fused data, the 23x3000%x3000%6 images
were cropped into 382,800 images with a size of
50x50x6, of which 2/3 were used as training and 1/3
were used for validation, and the ADAM optimization
algorithm was used to set its batch size to 128, the
learning rate to 0.01, and the loss function to mean
square error (MSE), and the trained model is used to

pediction near real-time LSP.

0,t<s
dZ{ (1)
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where d denotes the days away from phenophase
transition dates, ¢ denotes the fusion image time, s
denotes the SOS, and e denotes is EOS.
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Fig. 2. The near real-time LSP prediction structure diagram, N
and K denote the number of feature maps and the kernel size
for the convolutional layer, respectively. Rectified and linear
units (ReLU) denote the nonlinear activation layers.

4 Result

4.1 prediction near real-time LSP

Fig. 3 shows the spatial distribution of phenophase
transition days on DOY (Day of year) 81, 113, 129,
respectively. The phenophase transition days obtained
using CNN and label have a similar spatial distribution
across the study area, with approximately the same
number of transition days for the same feature types and
relatively low spatial heterogeneity. In different
phenophase transition days on DOY, the phenophase
transition days will also increase with the increase of
DOY.

Fig. 4 shows the frequency statistics of the number of
days difference between the CNN prediction results and
the label, including only the image elements with valid
retrievals in both results. The difference in phenophase
transition days for DOY 81,113,129 are mainly
concentrated within 50 days, and in fact, most of the
differences are much smaller, with the number and
frequency of pixels with differences of 20 days or less
accounting for 80% of the valid retrieved pixels, which
also indicates that most of the differences are mainly
concentrated within 20 days.
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Fig. 3. The spatial distribution of CNN prediction and label
results in phenophase transition days on the 81th, 113th and
129th days of 2018, a-c are CNN prediction results; d-f is label.
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aand d) day 81, b and ¢) day 113 and ¢ and f) day 129.
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Fig. 4. The number and frequency of the days of difference
between CNN prediction and label results in the transition days
on the 81th, 113th and 129th days of 2018. a) day 81, b) day
113 and c) day 129.

4.2 Accuracy Evaluation of prediction near
real-time LSP

The scatter plot compares the phenophase transition days
obtained by CNN model prediction and label (Fig. 5). In
each DOY we selected the effective retrieved pixels of a
30KM*30KM size arear to draw a scatter plot. For the
phenophase transition days on DOY 81, 113,129, the
prediction results and the label are generally correlated,
and the scatter points are mainly distributed around the
1:1 line. The R? is 0.635, 0.7743, 0.72, with RMSE of
3.535, 3.58, 3.55, respectively
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Fig. 5. Scatter plot of CNN prediction results and label results.
a) day 81, b) day 113 and c) day 129.

5 Conclusions

This research proposes a method based on CNN to
predict near real-time LSP using individual Landsat 8
images, which can directly extract advanced features
from the reflectance data of Landsat 8 to predict the
phenophase transition days of LSP, instead of the
traditional SOS and EOS. However, it is worth noting
that due to the lack of ground verification data, the
method of this study is not compared with the ground
measurement data.
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