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Abstract. Flood forecasting has been an effective way to reduce the potential flood hazards for a

sustainable socio-economy. However, the lack of in-situ precipitation records has limited the applicability of

flood forecasting with hydrologic models in poorly gauged basins. To address this problem, we aim to

develop a flood forecasting framework based on the merged satellite precipitation and a hydrologic model.

The framework was then applied to a small basin in the upper Lequan River Basin, Hainan, China for flood

forecasting experiments. Results indicate that the combination of merged satellite precipitation and

hydrologic model can generally well reproduce the past major flood events occurred in the basin. Our

approaches are expected to provide new insights into the flood forecasting in small and poorly gauged

basins and can be used to support the sustainable development of the socio-economy.

1 Introduction

The massive advantages of hydrologic simulation in
floods, droughts and other water hazards forecasting
have been well acknowledged for a rather long time [1-
2]. However, the model has not been widely used until
recent decades due to the computational burden. Current
development in the computational efficacy has allowed
the hydrologic models to be used in real-time flood
forecasting, which has the potential to reduce the flood
hazard before it arrives [3-4]. Nowadays, state-of-art
hydrological models are considered able to depict the
runoff generation, runoff routing and many other
hydrologic components in a relatively accurate way [5-7].
With the use of hydrologic models, multiple studies have
reported increasing Dbenefits in protecting the
downstream area from inundation and guiding the dam
operation for flood control [6-7].

Despite the hydrologic model has brought many
advantages to the flood forecasting, the lack of in-situ
observed precipitation data have limited the use of
hydrologic model in flood forecasting. Normally, flood
forecasting by hydrologic models require meteorologic
forcing data such as precipitation and temperature for
calibration and validation [8]. However, in areas with
sparse population or inhabitable environment, gauged
meteorological stations were rarely built, and historic
meteorologic data are often wunavailable. This is
particularly the case for the upper Lequan River Basin in
the Hainan Island, China. The basin is surrounded by
mountains, and meteorologic stations were sparsely
constructed. On the other hand, the need for flood
forecasting has been increasing for the past years
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because the population and economy are growing in the
downstream areas, which are prone to flood disasters.
That being said, the lack of observed precipitation has
posed a challenge to flood forecasting with hydrologic
models due to the difficulty in calibrating and validating
the model [9].

To address this problem, in this study we develop a
flood forecasting framework based on the merged
satellite precipitation and a hydrologic model. The
merged satellite precipitation was originally developed
by the National Meteorological Center and was
employed in this study to drive the Xin’anjiang
hydrologic model to reconstruct the flood events in the
recent years. The simulated flood events are then
compared with observed streamflow records for an
extensive validation. Results indicate that the
combination of the merged satellite precipitation and the
Xin’anjiang hydrologic model can well reproduce the
flood events in the past and can be used in real-time
flood forecasting. Our approaches can support the
government to prevent flood hazards, and to achieve the
sustainable development of the socio-economy.

2 Materials and methods

2.1 Study area

The upper Lequan River Basin has a drainage area of
508 km? and its outlet is the Fucai hydrologic station
(see Fig. 1). The basin is climatologically affected by the
East Asia monsoon and sees a large temporal variability
of precipitation. Historically, the basin experienced a
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large amount of floods that brought significant economic
losses to the downstream areas.
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Fig. 1. The map of the upper Lequan River Basin.

2.2 Merged CMORPH
product

satellite precipitation

The merged CMORPH satellite precipitation product
was developed from China's automatic stations and
CMORPH precipitation products with a two-step data
merging algorithm of probability density matching +
optimal interpolation (PDF+OI), and the date product
was developed at a resolution of 1 hour and 0.1°,
covering the land area of the country since 2008. Its
temporal and spatial resolution is high, which can meet
the calibration and validation requirements of the flood
forecasting model in the upper Lequan River Basin.

The merging steps of this dataset are as follows:

Step 1: Obtain hourly precipitation data from ground
observations: extract the hourly precipitation data from
the real-time database every hour after quality control at
the national automatic station, and interpolate them into
an hourly grid with a spatial resolution of 0.1°x0.1°.

Step 2: Obtain precipitation products retrieved by
CMORPH satellite: Through FTP transmission, the
CMORPH precipitation products developed by the
Climate Prediction Center of the US Environmental
Prediction Center are obtained (the original CMORPH
data has a spatial resolution of 8km and a time resolution
of 30 minutes) and resampled to derive a 1-hour,
0.1°x0.1° satellite precipitation product.

Step 3: Use the probability density function matching
(PDF) error correction method to correct the systematic
errors of the precipitation products retrieved by the
CMORPH satellite in China based on the hourly ground
observation precipitation data in China.

Step 4: Correct the initial estimation field from the
satellite product obtained in Step 3 with the Optimal
Interpolation (OI) method based on the observation-
based product obtained in Step 1, thereby achieving the
effective combination of the two datasets and obtaining
the final merging results of hourly precipitation data
products.

Step 5: Quantitative evaluation and analysis of
product spatial distribution, error characteristics, etc.

2.3 Evaporation and streamflow data

The Xin’anjiang hydrologic model requires evaporation
as an input in addition to precipitation. Due to no
evaporation gauging stations within the basin, here we
select two meteorological stations of Danzhou and
Qiongzhong near the basin as the data source of potential
evapotranspiration within the basin. The data is at a daily
scale, and are processed by the weighted Tyson polygon
method to calculate the daily evaporation, before
downscaling to every hour.

The daily streamflow data of the Fucai station was
collected from the Hydrologic Yearbook to calibrate and
validate the hydrologic model.

2.4 Xin’anjiang hydrologic model

In this study, the Xin’anjiang hydrologic model is used
as the base model for flood forecasting in the upper
Lequan River Basin. Its concept is briefly introduced as
follows:

In the 1970s, Professor Zhao Renjun of Hohai
University designed the first complete watershed
hydrological model in China—Xin’anjiang Two Water
Source Model [10]. In the mid-1980s, drawing on the
concept of hillside hydrology and research results at
home and abroad, he proposed the Xin’anjiang Three
Water Source model. The Xin'anjiang model is reliable
for streamflow simulation in both humid and semi-
humid areas, and has good simulation performance and a
high forecast accuracy in most cases. Its application is
not only limited to rainfall runoff simulation and flood
forecasting, but also water-related fields such as water
resources planning and management, disaster prevention,
and agricultural development. It has also made a major
contribution to the development of the national socio-

economy.
The structure of this model is simple and clear and
easy to realize through computer programming.

Therefore, it is widely favoured in scientific research and
engineering applications. However, due to the looped
structure of the model, it is not possible for the model to
comprehensively describe the flow generation and
routing of the hydrological system, and it also cannot
simulate the land surface process in the changing
environment (such as land use, soil erosion, non-point
source pollution, climate change impact assessment, etc.).

The model divides the watershed into many unit
watersheds, and calculates the sink term of each unit
watershed to obtain the outgoing flow process of the unit
watershed. The model then performs the runoff and
flood routing along the unit watersheds towards the basin
outlet. The main purpose of dividing the unit basin is to
deal with the spatial variability of rainfall, so the unit
basin should be of appropriate size so that the rainfall
distribution on each area is relatively uniform. If there
are large and medium-sized reservoirs in the basin, the
catchment area above the reservoir should be regarded as
a unit basin.

The Xin’anjiang model can be divided into two parts:
the runoff generation module and the routing module.
The runoff module employs the Three Water Source
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runoff generation module. The module itself consists of
three parts, namely the evapotranspiration calculation,
the runoff calculation, and the water source division.
Similarly, the Xin'anjiang model divides the flow routing
processes into three parts: the land surface routing, the
river network routing, and the groundwater routing. The
land surface routing 1is calculated through unit
hydrograph method, the river network routing is
calculated through the Muskingum method simplified
from the St. Venant equations, and the groundwater
routing is calculated through the simple, effective linear
reservoir method.

2.5 Particle Swarm Optimization Algorithm for
Model Parameter Calibration

In this study, the parameters of the Xin’anjiang model
are calibrated automatically by the Particle Swarm
Optimization (PSO) algorithm [11]. The particle swarm
optimization is an algorithm based on intelligence
optimization, similar to the genetic algorithm derived
from the perspective of biological evolution. This
method was first produced when people observe the
predation behaviour of birds/fish schools. This method is
mainly based on the process of collaboration and
competition with individuals to find the optimal solution
in the space. The difference between the PSO and
another parameter optimization algorithm of genetic
algorithm is that the PSO mainly relies on the
cooperation between individuals to find the optimal
solution, while genetic algorithm secks the optimal
solution based on the survival of the best mutation noted
in Darwin's evolution theory.

The PSO algorithm assumes the following scenario: a
group of birds are randomly distributed in a certain
natural space. They don’t know where the food is, but
they can feel how far the food is from them. All the birds
are searching randomly for food, and the optimal
strategy depends on two aspects: search for the area
closest to the food, and search based on your own flight
experience.

A major concept of the PSO algorithm is that when
people make decisions, the main effect is people's own
experience and group experience. In other words, people
always make their own decisions based on their own
experience and group experience. The particle swarm
algorithm is simple to apply based on the above
principles, and the algorithm is easy to implement.

3 Results and discussion

3.1 Parameter sensitivity analysis

There are in all 16 parameters that can be calibrated (see
Table. 1). To reduce the equifinality of parameters, a
model parameter sensitivity analysis is first performed to
identify the sensitivity analysis to reduce the number of
calibrated parameters.

Table 1. Parameters of the Xin’anjiang model

Parameter Abbrevi Unit

. Values
ation

Soil water cappacity, WMO(1) | mm 5.60

upper
Soil water cappacity, WMO(2) | mm 10~140
lower
Soil water cappacity, WMO(3) | mm 10120
deeper
Evaporation factor K 0.3~1.8
Deep evaporation factor Cd 0.1~0.5
Impermeable area ratio IMP 0.01~0.5
Storage capacity curve
B 0.2~0.8

parameter

Mean free water storage
capacity
Free water storage

SM mm 3~65

. EX 1~1.5
capacity curve
Fre.e water groundwater KG 0.1~0.85
discharge parameter
Fr_ee water soil water KSS 0.1~0 85
discharge parameter
Groundwater parameter KD 0.3~0.8
Soil flow subsidence KKSS 0.1~0.999
parameter
Fast groundwater |y G 0.7~0.999
subsidence parameter
Low groundwater |y g 0.7~0.999
subsidence parameter
Unit hydrograph UH1~5 sum = 1

parameters 1~5

We randomly sample the above 20 parameters, and
obtain 10,000 parameter groups. These parameters were
input into the model to carry out flood simulation of
typical flood events at Fucai Station. The results show
that the upper, lower and deep soil water storage
capacity WMO, the mean free water storage capacity of
the basin SM, the free water groundwater discharge
parameter KG, the free water soil discharge parameter
KSS, the soil flow subsidence parameter KKSS, the fast
groundwater subsidence parameter KKGF, slow
groundwater subsidence parameter KKGS, and unit
hydrograph parameters UH (1~5) are more sensitive, and
the other parameters are not sensitive. Therefore, we
select the above 14 parameters for calibration.

3.2 Flood forecasting with the calibrated model

This study selects 10 typical flood events that occurred
in the upper Lequan River basin, and divided them into
the calibration group and the validation group to
calibrate and validate the parameters of the Xin'anjiang
flood forecasting model. The calibration and validation
results of the flood simulation are presented in the form
of the percentage bias (PB) and the determination of
coefficient (DC) Table 2.

Table 2. Calibration and validation of flood simulations
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precipitation have a good capability of simulating and
forecasting floods. Here, we further present a few
representative flood events that were caused by severe
storms and typhoons for illustration.
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Fig.2. The observed and simulated flood event during Oct.8
and Oct. 18, 2009, where the Typhoon Bama passed by. Obs
means observed streamflow, and Sim means simulated
streamflow, same for all figures.
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Fig. 3. The observed and simulated flood event during Oct.12
and Oct. 25, 2016, where the Typhoon Sarika passed by.

EREGCE 2022
800 -+-obs = sim
Flood event RB DC Note i g
20081011 -10.5% 0.88 calibration 5;: i
20091008 9.6% | 095 validation 5.
20101001 0.0% | 083 calibration B L
20101014 -21.8% | 076 calibration
20130801 18.3% 0.83 calibration (| —— ¥ i i :
20131109 T4% | 085 validation | S | ”
PR Fig. 4. The observed and simulated flood event during Sep.14
20140715 11.19 0.66 librat
% calibration and Sep. 20, 2014, where the Typhoon Kalmaegi passed by.
20140914 20.6% 0.92 validation s -
20160816 33.0% 0.82 validation o
L
20161012 -157% | 091 validation
The results indicate that the model can well . # !
reproduce the selected flood events, as the RB are fewer i /’ LN
than 20% and the DC are higher than 0.8 for most of the 200 ar e
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Fig. 5. The observed and simulated flood event during Aug.16
and Aug. 22, 2016, where the Tropical Storm Dianmu passed
by.

As is shown in Fig.2, 3, 4, and 5, the flood
forecasting model well captures the flood peak and the
flood processes for the flood events. This again confirms
that the merged satellite precipitation is a reliable data
source and can serve as a substitute of in-situ
precipitation in case that the gauged precipitation is
unavailable. Our results also confirm the applicability of
Xin’anjiang model in the flood forecasting in the upper
Lequan River Basin and similar basins that are affected
by strong storms and typhoons.

4 Conclusions

In this study, we develop a flood forecasting framework
based on the merged satellite precipitation and a
hydrologic model. The framework was then applied to a
small basin, namely the upper Lequan River Basin,
Hainan, China for validation of flood forecasting.
Results indicate that the combination of merged satellite
precipitation and hydrologic model can generally well
reproduce the past major flood events occurred in the
basin in terms of both the flood peak and flood volume.
This confirms the applicability of merged precipitation
and Xin’anjiang model in flood forecasting for basins
that are of small size and are often affected by storms
and typhoons. Our approaches and findings are expected
to provide new insights into the flood forecasting in
these basins, and can be used to support the sustainable
development of the socio-economy.

This study is supported by CSG Power Generation Co., Ltd.

(0200002019030304SG00003) and the National Natural
Science Foundation of China (U1865102).
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